一字形全钢防屈曲支撑耗能性能试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对一种新型防屈曲支撑进行性能试验研究。该种防屈曲支撑(以下称一字形全钢防屈曲支撑)的内核为一字形钢板,外约束单元为双腹板工字形钢,中间用薄橡胶作为无黏结材料。通过对8个一字形全钢防屈曲支撑试件进行轴向循环往复加载试验,研究了防屈曲支撑的耗能性能以及不同芯材特性、支撑长度对其耗能性能的影响。结果表明:一字形全钢防屈曲支撑的构造合理,所有试件的滞回曲线稳定饱满;芯材特性和支撑长度对于该种防屈曲支撑的耗能性能均有较大影响;以SLY225为芯材的防屈曲支撑,其耗能性能、低周疲劳性能与塑性变形能力均明显优于以SN490B为芯材的防屈曲支撑;SLY225能提供45%以上的附加有效阻尼比;增加支撑长度,防屈曲支撑的塑性变形能力与低周疲劳性能均有所下降。
This paper mainly presents an experimental research on a new type of buckling-restrained brace(BRB) which uses an in-line steel plate as the core and a double-web wide flange steel member as the outer unit.A thin rubber layer is used between the core plate and outer unit as unbonded material.Uniaxial cyclic loading tests of eight BRB specimens were conducted to investigate the energy dissipation capacity of the BRBs as well as the effects of core material and brace length on the energy dissipation capacity.The results show that the structure of this new BRB is applicable and all the hysteresis curves are stable and plump.Both core material properties and brace length have significant effects on the energy dissipation capacity of the BRBs.The specimen with SLY225 as the core material has better performance such as the energy dissipation capacity,low cycle fatigue performance and plastic deformation capacity than the one with SN490B as the core material.The former can provide an additional damping ratio of 45% which is larger than the latter.It is also found that the plastic deformation capacity and the low cycle fatigue performance degrade with the increase of the brace length.
引文
[1]汪家铭,中岛正爱,陆烨.屈曲约束支撑体系的应用与研究进展(Ⅰ)[J].建筑钢结构进展,2005,7(1):1-16.(Wang Jiaming,Nakashima M,Lu Ye.Thepractice and research development of buckling-restrained braced frames(Ⅰ)[J].Progress in SteelBuilding Structures,2005,7(1):1-16.(in Chinese))
    [2]郭彦林,刘建彬,蔡益燕,邓科.结构的耗能减震与防屈曲支撑[J].建筑结构,2005,35(8):18-23.(Guo Yanlin,Liu Jianbin,Cai Yiyan,Deng Ke.Structural energy dissipation and seismic mitigationmethod and buckling-restrained brace[J].BuildingStructure,2005,35(8):18-23.(in Chinese))
    [3]Kimura K,Takeda Y,Yoshioka K,Furuya N,Takemoto Y.An experimental study on braces encasedin steel tube and mortar[C]//Summaries of TechnicalPapers of Annual Meeting of the Architectural Instituteof Japan,Strucural Engineering Section.Tokyo,Japan:Architectural Institute of Japan,1976:1041-1042.
    [4]Mochizuki N,Murata Y,Andou N,Takahashi S.Anexperimental study on buckling of unbonded bracesunder centrally applied loads[C]//Summaries ofTechnical Papers of Annual Meeting of the ArchitecturalInstitute of Japan,Strucural Engineering Section.Tokyo,Japan:Architectural Institute of Japan,1980:1913-1914.
    [5]Watanabe A,Hitomoi Y,Saeki E,Wada A,FujimotoM.Properties of braced encased in buckling-restrainingconcrete and steel tube[C]//Proceedings of the NinthWorld Conference on Earthquake Engineering.Tokyo-Kyoto,Japan:Japan Association for EarthquakeDisaster Prevention,1988:719-724.
    [6]Fujimoto M,Wada A,Saeki E.A study on theunbonded braces encased in buckling-restrainingconcrete and steel tube[J].Journal of StructuralEngineering,1988,114(2):249-258.
    [7]Sridhara B N.Sleeved column-as a basic compressionmember[C]//Proceedings of 4th Internationalconference on steel structures and space frames.Singapore:Singapore Structural Steel Society,1990:181-188.
    [8]Kuwahara S,Tada M,Yoneyama T,Imai K.A studyon stiffening capacity of double-tube members[J].Journal of Structural and Construction Engineering,1993,445(3):151-158.
    [9]Suzuki T,Ogawa T,Ogasawara T.A study on inelasticbuckling of circular tubes under axial compression withouter constrains[J].Journal of Structural andConstruction Engineering,1994,448(4):137-143.
    [10]Hasegawa H,Takeuchi T,Nakata Y,Iwata M,Yamada S,Akiyama H.Experimental study on dynamicbehavior of unbonded braces[J].Journal ofArchitecture and Building Science,1999,114(1448):103-106.
    [11]Clark P,Kasai K.Design procedures for buildingsincorporating hysteretic damping devices[C]//Proceedings of 68th Annual Convention.Santa Barbara,California:Structural Engineers Association ofCalifornia,1999:105-112.
    [12]Iwata M,Kato T,Wada A.Buckling-restrained bracesas hysteretic dampers[C]//Proceedings of ThirdInternational Conference on Behavior of Steel Structuresin Seismic Areas.Montreal,Canada:Rotterdam andBrookfield,2000:33-38.
    [13]Nakamura H,Maeda Y,Sasaki T,Wada A,TakeuchiT,Nakata Y,Iwata M.Fatigue properties of practical-scale unbonded braces[R].Futtsu City,Japan:Nippon Steel Corp.,2000,(82):51-57.
    [14]Kobayashi F,Murai M,Iwata M.Experiments oflightened buckling-restrained braces[C]//Summariesof Technical Papers of Annual Meetingof AIJ.Tokai,Japan:Architectural Institute of Japan,2002:549-550.
    [15]Manabu H,Tadaharu N,Takashi T,Kazunari T.Studies on buckling-restrained bracing using triple steeltubes:part 1:outline of triple steel tube member andstatic cyclic loading tests[C]//Summaries of TechnicalPapers of Annual Meeting of AIJ.Kinki,Japan:Architectural Institute of Japan,2005:1011-1012.
    [16]Kazunari T,Tadaharu N,Takashi T,Manabu H.Studies on buckling-renstrained bracing using triplesteel tubes:part 2:consideration on experimentalresults and FEM analysis[C]//Summaries ofTechnical Papers of Annual Meeting of AIJ.Kinki,Japan:Architectural Institute of Japan,2005:1013-1014.
    [17]Takeuchi T,Ida M,Yamada S,Suzuki K.Estimationof cumulative deformation capacity of bucklingrestrained braces[J].Journal of StructuralEngineering,ASCE,2008,134(5):822-831.
    [18]Miller D J,Fahnestock L A,Eatherton M R.Self-centering buckling-restrained braces for advancedseismic performance[C]//Proceedings of the 2011Structures Congress.Las Vegas,Nevada:StructuralEngineering Institute of ASCE,2011:960-970.
    [19]Chen C C,Wang C H,Hwang T C.Buckling strengthof buckling inhibited braces[C]//Proceedings of the3rd Japan-Korea-Taiwan Joint Seminar on EarthquakeEngineering for Building Structures.Taipei:NationalScience Council and Center for Earthquake EngineeringResearch,2001:265-271.
    [20]Tsai K C,Lai J W.A study of buckling restrainedseismic braced frames[J].Structural Engineering,Chinese Society of Structural Engineering,2002,17(2):23-32.
    [21]刘建彬.防屈曲支撑及防屈曲支撑钢框架设计理论研究[D].北京:清华大学,2005:22-46.(LiuJianbin.Research on the design theory of buckling-restrained braces and buckling-restrained braced frames[D].Beijing:Tsinghua University,2005:22-46.(inChinese))
    [22]田俊.全钢防屈曲支撑的抗震性能[D].哈尔滨:哈尔滨工业大学,2007:9-19.(Tian Jun.Earthquake-resistant behavior of all-steel buckling-restrained braces[D].Harbin:Harbin Institute of Technology,2007:9-19.(in Chinese))
    [23]李妍.防屈曲支撑的抗震性能及子结构试验方法[D].哈尔滨:哈尔滨工业大学,2007:20-44.(LiYan.Seismic performance of buckling-restrained bracesand substructure testing methods[D].Harbin:HarbinInstitute of Technology,2007:20-44.(in Chinese))
    [24]赵俊贤,吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动,2009,29(3):131-139.(Zhao Junxian,Wu Bin.Workingmechanism and stability design methods of buckling-restrained braces[J].Journal of EarthquakeEngineering and Engineering Vibration,2009,29(3):131-139.(in Chinese))
    [25]谢强,严承涌,赵亮.屈曲约束支撑设计的刚度与强度准则[J].沈阳建筑大学学报:自然科学版,2009,25(1):95-99.(Xie Qiang,Yan Chengyong,ZhaoLiang.Stiffness and strength criteria for design ofbuckling-restrained braces[J].Journal of ShenyangJianzhu University:Natural Science,2009,25(1):95-99.(in Chinese))
    [26]程光煜,叶列平,许秀珍,崔鸿超.防屈曲耗能钢支撑的试验研究[J].建筑结构学报,2008,29(1):31-39.(CHENG Guangyu,YE Lieping,XU Xiuzhen,CUI Hongchao.Experimental research on buckling-restrained brace[J].Journal of Building Structures,2008,29(1):31-39.(in Chinese))
    [27]赵俊贤,吴斌,欧进萍.一种新型全钢防屈曲支撑抗震性能的试验研究[C]//第18届全国结构工程学术会议论文集.北京:中国力学学会结构工程专业委员会,2009:303-309.(Zhao Junxian,Wu Bin,OuJinping.Experimental study on the seismic behavior ofa novel type of all-steel buckling-restrained brace[C]//The 18th National Conference on Structural Engineering.Beijing:Professional Committee of Chinese MechanicalInstitute in Structural Engineering,2009:303-309.(inChinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心