爆炸破碎区坚硬岩石动力模型及其数值模拟方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究爆炸破碎区坚硬岩石波阵面后的动力变形规律,引入改进的C.C.Grigorian模型,建立高压状态方程,推导增量本构方程。基于LS-DYNA9703D二次开发平台编制用户子程序,计算坚硬岩石耦合装药时高围压条件下爆炸破碎区动力响应,并将计算结果与模型试验、弹性模型及PSEUDO_TENSOR模型的计算结果进行比较分析。结果表明:改进的C.C.Grigorian模型计算结果与试验结果比较一致,可用于高围压水平下爆炸破碎区坚硬岩石动力变形与破坏分析。由于考虑岩石破碎软化的影响,爆腔永久位移与弹性模型和PSEUDO_TENSOR模型的计算结果明显不同;波阵面后爆腔表面介质的速度衰减规律与试验结果较为相似;围压水平对爆腔膨胀后的永久位移有显著影响,围压水平越高永久位移越小;爆腔膨胀后的永久位移对松弛特征时间比较敏感。
The modified C.C.Grigorian model was introduced to investigate the dynamic deformations of hard rock near explosion cavity after wavefront,the equations under high pressure and the incremental constitutive equations were presented.The dynamic responses of coupled-charge rock near explosion cavity under high confining pressure were calculated by introducing user-defined subroutine based on the LS-DYNA9703Dsecondary development platform,and the calculation results were compared with other results of experiment,elastic model or PSEUDO_TENSOR model.The results indicated that the calculation results of modified C.C.Grigorian model were in good agreement with the results derived from the similar experiment;and the modified C.C.Grigorian model was reasonable to investigate the dynamic deformation and fracture of hard rock near explosion cavity under high confining pressure after wavefront.Due to the softening effects of cracked rock,the permanent displacements of explosion cavity that calculated by using modified C.C.Grigorian model were obvious different from those based on elastic model and PSEUDO_TENSOR model,and the velocity attenuation of surface medium of explosion cavity after wavefront was in good agreement with those of experiment.The permanent displacements after expansion of explosion cavity were greatly affected by the values of confining pressure,and the higher the confining pressure was,the lower the permanent displacement was.The permanent displacements after expansion of explosion cavity were sensitive to the relaxation characteristic time.
引文
[1]葛涛,王明洋.坚硬岩石在强冲击荷载作用下近区的性状研究[J].爆炸与冲击,2007,27(4):306–311.(GE Tao,WANG Mingyang.Characters near strong impact loading zone in hard rock[J].Explosionand Shock Waves,2007,27(4):306–311.(in Chinese))
    [2]戚承志,钱七虎.岩体动力变形与破坏的基本问题[M].北京:科学出版社,2009:65–94.(QI Chengzhi,QIAN Qihu.Basic problemsof dynamic deformation and fracture of rock mass[M].Beijing:Science Press,2009:65–94.(in Chinese))
    [3]黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J].岩石力学与工程学报,2000,19(4):468–47l.(HUANG Mingli,TANGChun an,ZHU Wancheng.Investigation model for rock failureprocess[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(4):468–471.(in Chinese))
    [4]杨军,金乾坤,高文学,等.岩石爆破损伤模型研究的几个问题[J].岩石力学与工程学报,1999,18(3):255–258.(YANG Jun,JINQiankun,GAO Wenxue,et al.Some problems in the research of rockdamage model by blasting[J].Chinese Journal of Rock Mechanics andEngineering,1999,18(3):255–258.(in Chinese))
    [5]王明洋,葛涛,戚承志,等.爆炸荷载作用下岩石的变形与破坏研究(I)[J].防灾减灾工程学报,2003,23(2):43–53.(WANGMingyang,GE Tao,QI Chengzhi,et al.Study of deformation andfailure of rock under explosion load(part I)[J].Journal of DisasterPrevention and Mitigation Engineering,2003,23(2):43–53.(inChinese))
    [6]MCHUGH S.The simulation of damage and fracture caused bydynamic force[R].New York:Sandia National Laboratories,1983:234–243.
    [7]MARGOLIN L G,ADAMS T M.Spatial differencing for finitedifference code[R].New Mexico:Los Alamos National Laboratory,1985:179–232.
    [8]GRADY D E,KIPP M E.Continuum modeling of explosion fracturein oil shale[J].International Journal of Rock Mechanics and miningSciences and Geomechanics Abstracts,1987,17(3):147–157.
    [9]ВОВКАА,ЗАЬШЛЯЕВБВ,ЕВТЕРЕВЛС.Поведениегрунтовприимпульсныхнагрузок[M].Киев:Науковадумка,1984:121–155.
    [10]СТАВРОГИНАН,ПРОТОСЕНЯАГ.Механикадеформированияиразруше-иягорныхпород[M].Москва:Недра,1992:37–60.
    [11]王明洋,王立云,戚承志,等.爆炸荷载作用下岩石的变形与破坏研究(II)[J].防灾减灾工程学报,2003,23(3):9–20.(WANGMingyang,WANG Liyun,QI Chengzhi,et al.Study of deformationand failure of rock under explosion load(part II)[J].Journal of DisasterPrevention and Mitigation Engineering,2003,23(3):9–20.(in Chinese))
    [12]沈成康.断裂力学[M].上海:同济大学出版社,1996:43–65.(SHEN Chengkang.Fracture mechanics[M].Shanghai:Tongji UniversityPress,1996:43–65.(in Chinese))
    [13]经福谦.实验物态方程导论[M].北京:科学出版社,1999:34–97.(JING Fuqian.Introduction to equation of experimental materialstate[M].Beijing:Science Press,1999:34–97.(in Chinese))
    [14]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005:104–117.(BAI Jinze.Theory and analysis of example forLS-DYNA3D[M].Beijing:Science Press,2005:104–117.(in Chinese))
    [15]АДУЩКИНВВ,СПИВАКАА.ГеомеханикакрупномасщтаъныхВзрывов[M].Недра:[s.n.],1993:96–118.
    [16]陈万祥,郭志昆,袁正如,等.地震分析中的人工边界及其在LS-DYNA中的实现[J].岩石力学与工程学报,2009,28(增2):3 504–3 515.(CHEN Wanxiang,GUO Zhikun,YUAN Zhengru,etal.Artificial boundary for seismic analysis and its applications toLS-DYNA[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3 504–3 515.(in Chinese))
    [17]范新.深部岩体的变形与动力破坏效应研究[博士学位论文][D].南京:解放军理工大学,2006.(FAN Xin.Study of deformation anddynamic damage effects of deep rock[Ph.D.Thesis][D].Nanjing:PLA University of Science and Technology,2006.(in Chinese))
    [18]SAHARAN M R,MITRI H S.Numerical procedure for dynamicsimulation of discrete fractures due to blasting[J].Rock Mechanics andRock Engineering,2008,41(5):641–670.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心