超高速磨削机床主轴系统模态分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对液体动静压轴承支撑的超高速磨削主轴系统工作的特殊性,在机床工作过程中,主轴高速旋转,动静压轴承的支撑刚度随转速动态变化。为了解主轴系统工作过程中的动态特性,应用Flunent软件求解液体动静压轴承的动态支撑刚度,而后在此基础上利用有限元分析软件ANSYS建立超高速磨床主轴系统的三维有限元模型,并对其进行模态分析,得到了各阶固有频率和振型。通过设置不同转速下轴承的支撑刚度,获得主轴系统模态分析结果,并利用图解法求解出主轴系统的临界转速。分析结果表明主轴系统在高速旋转状态下,系统的结构刚度会发生变化,使主轴系统的固有频率改变,并且随着转速提高差异越显著。通过振动试验测试验证仿真分析的可靠性,经分析可知,试验与仿真的误差主要来源于支撑模型的简化。
Spindle system on ultra-high speed grinding supported by liquid hybrid bearing is special.In the process of machine working,spindle rotates in high speeds,and the supporting stiffness of hybrid bearing changes dynamically with the change of rotation speed of spindle.In order to understand the dynamic characteristics of the spindle system,Flunent is used to calculate the dynamic stiffness of the liquid hybrid bearing.The 3D finite element model of spindle system on ultra-high speed grinder is established,and the natural frequencies and mode shapes are obtained by utilizing ANSYS.Through setting different stiffness in different rotational speeds,the results of dynamic modal analysis are obtained,and the critical speeds of the spindle system are obtained through graphical method.The results show that in high speed rotation state,the centrifugal stiffening effect occurs due to the changes in structural stiffness of the system.With the rise of rotational speeds the differences become more significant.The simulation analysis is verified to be reliable through vibration experiment.the errors between experiment and simulation mainly come from the simplification for support model.
引文
[1]李长河,蔡光起,丁玉成,等.超高速磨削相关技术与工业应用[J].中国科技论文在线,2008,3(8):618-623.LI Changhe,CAI guangqi,DING Yucheng,et al.Keytechnology and application for super-high speed grindingmachining[J].Sciencepaper Online,2008,3(8):618-623.
    [2]武弘毅.浅谈液体动静压轴承[J].机械工人,冷加工,2003(5):8-10.Wu Hongyi.Study on the liquid hybrid bearing[J].Mechanical Workers-Cold Working,2003(5):8-10.
    [3]万金贵,汪希平,李文鹏,等.电磁轴承支承的透平膨胀机转子系统模态分析[J].机械工程学报,2010,46(19):86-91.WAN Jingui,WANG Xiping,LI Wenpeng,et al.Modalanalysis of turbo expander rotor supported by activemagnetic bearings[J].Journal of MechanicalEngineering,2010,46(19):86-91.
    [4]罗筱英,唐进元.结构参数对砂轮主轴系统动态性能的影响[J].机械工程学报,2007,43(3):128-134.LUO Xiaoying,TANG Jinyuan.Effect of structureparameters on dynamic properties of spindle system[J].Chinese Journal of Mechanical Engineering,2007,43(3):128-134.
    [5]CHRIS K M,WANG Fenglin.Theoretical,numerical,and experimental modal analysis of a single-windinggradient coil insert cylinder[J].Magn.Reson.Mater.Phy.,2006(19):152-166.
    [6]李啸天,韩振南.基于ANSYS软件的转子系统临界转速及模态分析[J].机械管理开发,2010,25(3):184-185.LI Xiaotian,HAN Zhennan.Rotator critical rotationalspeed and modali analysis based on ANSYS[J].Mechanical Management and Development,2010,25(3):184-185.
    [7]王犇,华林.高速旋转状态下汽车弧齿锥齿轮的动力学模态分析[J].汽车工程,2011,33(5):447-451.WANG Ben,HUA Lin.Dynamic modal analysis ofautomotive spiral bevel gears with high rotation speed[J].Automotive Engineering,2011,33(5):447-451.
    [8]陈小波,李静,陈健云.考虑离心刚化效应的旋转风力机叶片动力特性分析[J].地震工程与工程振动,2009,29(1):117-122.CHEN Xiaobo,LI Jing,CHEN Jianyun.Analysis ofdynamic characteristics of rotating wind turbine bladewith centrifugal stiffening effect[J].Journal ofEarthquake Engineering and Engineering Vibration,2009,29(1):117-122.
    [9]LESAFFRE N,SINOU J J,THOUVEREZ F.Stabilityanalysis of rotating beams rubbing on an elastic circularstructure[J].Journal of Sound and Vibration,2007,299:1005-1032.
    [10]谢远森,李意民,周忠宁,等.旋转预应力条件下的叶片流固耦合模态分析[J].噪声与振动控制,2009(4):34-37.XIE Yuansen,LI Yimin,ZHOU Zhongning,et al.Modeanalysis of fluid-structure coupling blade under rotationaland pre-stress condition[J].Noise and Vibration Control,2009(4):34-37.
    [11]刘文志.超高速大功率磨削主轴系统及其液体动静压混合轴承的研究[D].沈阳:东北大学,1996.LIU Wenzhi.Study on ultra-high-speed high-powergrinding spindle of hydro hybrid bearings[D].Shenyang:Northeastern University,1996.
    [12]GUO Zenglin,HIRANO T,KIRK R G.Application ofCFD analysis for rotating machinery-part 1:Hydrodynamic,hydrostatic bearings and squeeze filmdamper[J].Journal of Engineering for Gas Turbines andPower,2005,127:445-451.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心