饱和砂土液化前高孔压状态的流动特性试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
将液化及液化后状态的砂土视为流体状态,研究发现液化及液化后砂土是一种剪切稀化非牛顿流体。对于液化前高孔压状态下的流动特性也值得探讨。根据落球黏度计的原理,开发了饱和砂土液化前流动特性的模型试验装置。在模型箱中铺设饱和砂土,模型箱底部与一水箱相连,提高水箱高度可以使模型箱中的饱和砂土产生超孔压。模型箱的砂土中埋设一个可以水平拉动的钢球,通过监测钢球水平运动的速度和所受的阻力来计算砂土的表观黏度,得到饱和砂土液化前高孔压状态下的流动特性。试验中考虑了超孔压比、钢球运动速度对结果的影响。试验表明,饱和砂土在液化前高孔压状态下,表观黏度均随着应变率的增大而减小,呈现出剪切稀化非牛顿流体特性,同时随着超孔压比的提高,表观黏度也逐渐减小。
Liquefied and post-liquefied sand can be treated as a kind of fluid.Past research has suggested that liquefied and post-liquefied sand is a shear-thinning non-Newtonian fluid.It's worth discussing the flow characteristics of pre-liquefied sand under high pore pressure ratio state.According to the theory of dropping ball viscosimeter,the test apparatus of flow characteristics of pre-liquefied sand is developed.The saturated sand was laid in a model box.A water box is linked with the bottom of the sand box.The height of water box can be enhanced to obtain the excess pore pressure in the sand soil.A steel sphere,embedded in the sand box,can be moved in the horizontal direction.Resistance force and velocity are measured during sphere dragging and apparent viscosity is evaluated.The velocity of the sphere and excess pore pressure ratio are the main factors in the tests.The results show that the apparent viscosity of the pre-liquefied sand decreases with the increase of the strain rate.The pre-liquefied sand is shear thinning non-Newtonian fluid,which is similar with liquefied and post-liquefied sand.The apparent viscosity of the pre-liquefied sand decreases with the increase of the excess pore pressure ratio.
引文
[1]曹振中,袁晓铭,陈龙伟,等.汶川大地震液化宏观现象概述[J].岩土工程学报,2010,32(4):645-650.
    [2]Youd TL,Perkin D M.Mapping of liquefaction severity index[J].Journal of Geotechnical Engineering Division,ASCE,1987,113(11):1374-1392.
    [3]Shamoto Y,Zhang J M,Goto S.Mechanismof large post liquefaction deformation in saturated sand[J].Soils and Foundations,1996,37(2):71-80.
    [4]张建民.地震液化后地基大变形的实用预测方法[A].第八届土力学及岩土工程学术会议论文集,北京,1999:573-577.
    [5]刘汉龙,陆兆溱,钱家欢.土石坝地震永久变形分析[J].河海大学学报,1996,24(1):91-96.
    [6]Shamoto Y,Sato M,Zhang J M.Simplified estimation of earthquake-induced settlements in saturated sand deposits[J].Soils and Foundations,1996,36(1):39-50.
    [7]Dafalias Y F.Bounding surface plasticity I:Mathematical foundation and hypoplasticity[J].Journal of Engineering Mechanics,ASCE,1986,112(9):966-987.
    [8]Sasaki Y,Towhata I,Tokida K I,et al.Mechanism of permanent displacement of ground caused by seismic liquefaction[J].Soils and Founda-tions,1992,32(3):79-96.
    [9]Miyajima M,Kitaura M,Koike T,et al.Experimental study on characteristics of liquefied ground flow[A].The First International Conference onEarthquake Geotechnical Engineering,Balkema,1995:969-974.
    [10]Towhata I,Vargas-Monge W,Orense R P,et al.Shaking table tests on subgrade reaction of pipe embeded in sandy liquefied subsoil[J].Soil Dy-namics and Earthquake Engineering,1999,18:347-361.
    [11]Nishimura S,Towhata I,Honda T.Laboratory shear tests on viscous nature of liquefied sand[J].Soils and Foundations,2002,42(4):89-98.
    [12]佐藤,大保直人,浜田政則.動的遠心模型試驗裝置による砂地盤の側方流動?象に關する基礎實驗[A].日本土木學系?9回年次學術演講?,1994:520-521.
    [13]陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[J].岩土工程学报,2006,28(9):1139-1143.
    [14]陈育民,刘汉龙,邵国建,等.砂土液化及液化后流动特性试验研究[J].岩土工程学报,2009,31(9):1408-1413.
    [15]The Committee of Soil Dynamics of Geotechnical Engineering Division.Definition of terms related to liquefaction[J].Journal of Geotechnical En-gineering,ASCE,1978,104(GT9):1197-1120.
    [16]刘汉龙,井合进,一井康二.大型沉箱式码头岸壁地震反应分析[J].岩土工程学报,1998,20(2):26-36.
    [17]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心