Q235、Q345钢结构材料的低周疲劳性能
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对Q235、Q345钢的低周疲劳性能进行了研究。采用轴向应变控制方法,在岛津电液伺服疲劳试验机上测定了2种钢低周疲劳过程中的循环应力响应特征、循环应力与应变的关系,通过拟合Basquin公式和Coffin-Manson公式得到了2种钢的疲劳寿命公式,据此计算了Nf=100周时的循环能量吸收率σa.Δεt值,并与别的钢筋进行了比较。通过断口扫描发现,Q235钢裂纹起源于试样表面,由于第二相质点和夹杂物的存在,形成微孔洞和微裂纹,互相连接形成疲劳断裂;Q345钢裂纹起源于表面,然后通过不断扩展形成微裂纹,再连接成宏观裂纹,最终导致材料断裂。
Low cycle fatigue(LCF) properties of Q235 and Q345 steels were investigated.The fatigue tests were conducted on a Shimadzu servo-hydraulic testing machine.The tests were run under uniaxial tension-compression loading with total strain control.Cyclic stress response characteristics and the cyclic stress-strain relationships of the two kinds of test materials were investigated.The Coffin-Manson parameters were derived from the test results.The values of σa·Δεt at the fatigue life of 100 cycles were obtained and compared with the results of other steel bars.The SEM micrographs revealed that fatigue crack initiated at the specimen surface.More cavities were observed on the fracture surface of Q235 steel than on that of Q345 steel.Due to the propagation and connection of the micro-cracks,the macro-cracks were formed and fracture occurred eventually.
引文
[1]Gong Shihong,Sheng Guangmin.The views on materials in“reinforced concrete structure in anti-seismic design”[J].The Standardization of Engineering Construction,1996(1):6-9.[龚士弘,盛光敏.对“钢筋混凝土结构构件抗震设计”材料部分的意见[J].工程建设标准化,1996(1):6-9.]
    [2]Pu Yumei,Wu Lin,Wu Jiecai.The overall anti-seismic prop-erties of Q235B and Q345BH H-beams[J].Anhui Metallur-gy,2005(4):1-5.[蒲玉梅,吴林,吴结才.Q235B、Q345B H型钢综合抗震性能试验研究[J].安徽冶金,2005(4):1-5.]
    [3]Gong Shihong,Sheng Guangming.Effects of toughness ofsteel on seismic performance of building structures[J].Earthquake Resistant Engineering,2004(3):41-47.[龚士弘,盛光敏.地震区建筑用钢的韧性对建筑物抗震性能的影响[J].工程抗震,2004(3):41-47.]
    [4]Gong Shihong,Sheng Guangming.Studies on steel in anti-seismic design[J].Earthquake Resistant Engineering,1995(3):37-42.[龚士弘,盛光敏.抗震设计用钢探讨[J].工程抗震,1995(3):37-42.]
    [5]Min Jie,Sheng Guangmin,Wu Jiecai,et al.Analysis of highstrain low cycle fatigue properties of hot rolled H beam steel[J].Journal of Iron and Steel Research,2009,21(11):41-44.[闵杰,盛光敏,吴结才,等.热轧H型钢的高应变低周疲劳性能研究[J].钢铁研究学报,2009,21(11):41-44.]
    [6]Qin Bin,Sheng Guangmin,Gong Shihong.Analysis on highstrain low cycle fatigue properties of 20MnSiVHRB400 rein-forced steel bars[J].Journal of Chongqing University,2003,26(7):93-96.[秦斌,盛光敏,龚士弘.20MnSiVHRB400钢筋的低周疲劳性能分析[J].重庆大学学报,2003,26(7):93-96.]
    [7]Zhan Suyu,Sheng Guangmin,Liu Xudong,et al.Study onhigh strain low cycle fatigue properties of HRB400E rein-forced steel bars[J].Material Heat Treatment,2010,39(16):22-26.[詹苏宇,盛光敏,刘旭东,等.高强HRB400E建筑用抗震钢筋高应变低周疲劳性能研究[J].材料热处理技术,2010,39(16):22-26.]
    [8]Abdalla J A,Hawileh R A,Oudah F,et al.Energy-basedprediction of low-cycle fatigue life of BS 460B and BSB500B steel bars[J].Materials and Design,2009,30(10):4405-4413.
    [9]Luo Yunrong,Wang Qingyuan,Yang Bo.Low cycle fatiguetests on low carbon steel[C]//Proceedings 2011 Interna-tional Conference on Business Management and ElectronicInformation.Guangzhou,2011,4:741-746.
    [10]Luo Yunrong,Guo Yi,Wang Qingyuan,et al.Low cycle fa-tigue behavior of high-strength structural steel under biasedstrain control[J].Journal of Applied Mechanics and Materi-als,2011,71/78:4020-4025.
    [11]中国航空工业总公司.GB/T15248—2008金属材料轴向等幅低循环疲劳试验方法[S].北京:中国标准出版社,2008.
    [12]Ye D,Matsuoka S,Nagashima N,et al.The low-cycle fa-tigue,deformation and final fracture behaviour of an auste-nitic stainless steel[J].Materials Science and Engineering:A,2006,415(1/2):104-117.
    [13]Bayerlein M,Christ H J,Mughrabi H.Plasticity-inducedmartensitic transformation during cyclic deformation of AISI304L stainless steel[J].Materials Science Engineering:A,1989,114:L11-L16.
    [14]Botshekan M,Degallaix S,Desplanques Y,et al.Tensileand LCF properties of AISI 316LN SS at 300 and 77 K[J].Fatigue Fracture of Engineering Material Structures,1998,21(6):651-660.
    [15]Wu J H,Lin C K.Effect of strain rate on high-temperaturelow-cycle fatigue of 17-4 PH stainless steels[J].MaterialsScience and Engineering:A,2005,390(1/2):291-298.
    [16]王栓柱.金属疲劳[M].福建:福建科学技术出版社,1986.
    [17]Callaghan M D,Humphries S R,Law M,et al.Energy-based approach for the evaluation of low cycle fatigue behav-iour of 2.25Cr-1Mo steel at elevated temperature[J].Jour-nal of Materials Science and Engineering:A,2010,527(21/22):5619-5623.
    [18]Koh S K,Oh S J,Li C,et al.Low-cycle fatigue life of SiC-particulate-reinforced Al-Si cast alloy composites with tensilemean strain effects[J].International Journal of Fatigue,1999,21(10):1019-1032.
    [19]Basquin O H.The experimental law of endurance tests[C]//Proceedings of ASTM.1910,10(II):625-630.
    [20]Coffin L F Jr.A study of the effects of cyclic thermal stres-ses on a ductile metal[J].Transactions of ASME,1954,76:931-950.
    [21]Cheng Bin,Xue Weichen.Studies on performance-basedseismic design of frame structures[J].Earthquake Engineer-ing and Engineering Vibration,2003,23(4):50-55.[程斌,薛伟辰.基于性能的框架结构抗震设计研究[J].地震工程与工程振动,2003,23(4):50-55.]
    [22]Gong Shihong,Sheng Guangmin.Application of micro vana-dium-titanium high earthquake resistant constructional struc-tural steel in anti-seismic design[J].Iron Steel VanadiumTitanium,1995,16(4):8-13.[龚士弘,盛光敏.微钒钛高抗震建筑结构钢在抗震设计中的应用[J].钢铁钒钛,1995,16(4):8-13.]
    [23]Goods S H,Brown L M.The nucleation of cavities by plas-tic deformation[J].Journal of Acta Metallurgica,1979,27(1):1-15.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心