卜寺沟水电站环境边坡危险源分类及危险度评价
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
水电工程环境边坡上任一小型局部失稳块体均会对其下水工建(构)筑物和人员造成巨大威胁,对环境边坡的评价应重点关注局部、个别块体的稳定性的调查与评价。卜寺沟水电站环境边坡共发育危险源100处,其中左岸发育61处,右岸发育39处,在大量精细现场调查分析的基础上,分别按地质成因、规模、破坏机制对其进行分类。按地质成因将危险源分为孤石(群)、危石(群)(一般≤100m3)、危岩体、高位覆盖层等4种类型。考虑危险源自身稳定性及工程重要性程度,选取危险源自身、途径边坡、触发因素等3个一级指标,选取与一级指标对应的9个二级指标和32个基础指标,建立指标齐全、易于操作的环境边坡危险源危险度评价体系,按评分值大小将危险度分为高、中、低3个等级。利用该评价体系对卜寺沟水电站环境边坡危险源危险度进行评价,评价结果表明:高危险度的危险源为19处,中等危险55处,低危险度26处,评价结果较符合实际,该体系对于危险源防治具有一定的工程意义。
A small local failure block in surrounding slope of hydropower project can become a big potential hazard for hydraulic construction(structure) building and human security.So the assessment of surrounding slope has to pay more attention to the stability investigation and assessment of the local and small block.There are a total of 100 hazard sources existing in surrounding slope of Busigou hydropower project.61 of them are developed in the left bank and 39 in the right bank.Based on a large number of precise field investigation and analysis,a classification is proposed according to geological genesis,scale and failure mechanism respectively.According to geological genesis,hazard sources are divided into four types:(group of)isolated stone,(group of)dangerous rock(generally≤100m3),dangerous rock mass and high position covering layer.Considering the hazard stability and degree of project importance,hazard rating assessment system(HRAS) of surrounding slope which has enough easily valued indicators is established according to three first level indicators(the hazard source,path and inducing factors),nine secondary indicators(stability,potential energy,hazard sources' shape,path's geometric features,vegetation growth,earthquake and rainfall),and 35 basic indicators.According to the level of values,hazard rating is divided into three levels—high,medium,and low level.Using this assessment system to evaluate the hazard rating of surrounding slope of Busigou hydropower project,the evaluation results show that in the total of 100 hazard sources,19 are of high hazard rating,55 of medium and 26 of low hazard sources.The result is largely correspondence to reality.This assessment system has some engineering significance for hazard source prevention and controlling.
引文
[1]黄达,黄润秋,周江平,等.雅砻江锦屏一级水电站坝区右岸高位边坡危岩体稳定性研究[J].岩石力学与工程学报,2007,26(1):175~181.Huang Da,Huang Runqiu,Zhou Jiangping,et al.Study onstability evaluation of unstable rock masses on right bank highaltitude slope in the first stage Jinping hydropower station.ChineseJournal of Rock Mechanics and Engineering,2007,26(1):175~181.
    [2]宋胜武,徐光黎,张世殊.论水电工程边坡分类[J].工程地质学报,2012,20(1):123~130.Song Shengwu,Xu Guangli,Zhang Shishu.On slope classificationfor hydropower engineering.Journal of Engineering Geology,2012,20(1):123~130.
    [3]宋胜武,冯学敏,向柏宇,等.西南水电高陡岩石边坡工程关键技术研究[J].岩石力学与工程学报,2011,30(1):1~22.Song Shengwu,Feng Xuemin,Xiang Boyu,et al.Research onkey technologies on high and steep rock slopes of hydropowerengineering in southwest China.Chinese Journal of RockMechanics and Engineering,2011,30(1):1~22.
    [4]宋胜武.汶川大地震工程震害调查分析与研究[M].北京:科学出版社,2009.Song Shenggwu.Analysis and Investigation on Seismic Damages ofProjects Subjected to Wenchuan Earthquake.Beijing:SciencePress,2009.
    [5]吉锋,邓忠文.水电工程环境边坡危险源危险性评价体系初步研究[J].长江科学院院报,2011,28(7):24~27.Ji Feng,Deng Zhongwen.Risk assessment of system ofenvironmental slope hazard at hydropower project.Journal ofYangtze River Scientific Research Institute,2011,28(7):24~27.
    [6]张世殊,徐光黎,宋胜武,等.水电工程环境边坡地震动破坏模式分析[J].四川大学学报(工程科学版).2011,43(增2):33~38.Zhang Shishu,Xu Guangli,Song Shengwu,et al.Seismic failuremodes of surrounding slope for hydropower engineering.Journal ofSichuan University(Engineering Science Edition),2011,43(S2):33~38.
    [7]袁国庆,檀瑞青,张明森,等.双江口水电站环境边坡孤石及危岩体发育特征与防治措施[J].四川地质学报,2011,(4):435~437.Yuan Guoqing,Tan Ruiqing,Zhang Mingsen,et al.Study ofslope stability of the Shuangjiangkou hydropower station.ActaGeologica Sichuan,2011,(4):435~437.
    [8]李会中,刘冲平,黄孝泉,等.金沙江乌东德水电站枢纽区高位自然边坡块体安全性评价与处理措施研究[J].资源环境与工程,2011,25(5):468~473.Li Huizhong,Liu Chongping,Huang Xiaoquan,et al.Study onblock safety evaluation and treatment measures of high naturalslope in key region of Wudongde hydropower station of Chinshariver.Resources Environment&Engineering,2011,25(5):468~473.
    [9]Mah J,Samson C,Mckinnon SD.3D laser imaging for jointorientation analysis[J].International Journal of Rock Mechanicsand Mining Sciences,2011,48(6):932~941.
    [10]Koleini M.Falling rock hazard index:A case study from theMarun Dam and power plant,south-western Iran[J].Bulletin ofEngineering Geology and the Environment,2011,70(2):279~290.
    [11]Youssef A,Maerz N.Development,justification,and verificationof a rock fall hazard rating system[J].Bulletin of EngineeringGeology and the Environment,2012,71(1):171~186.
    [12]日本道路協.落石対策便覧[M].東京:日本道路協会,2000.Japan Road Association.Manual Guide for Countermeasure toRock-fall.Tokyo:Japan Road Association,2000.
    [13]Willenberg H,Eberhardt E,Loew S,et al.Hazard assessment andrunout analysis for an unstable rock slope above an industrial sitein the Riviera valley[J].Switzerland.Landslides,2009,6(2):111~119.
    [14]Palma B,Parise M,Reichenbach P,et al.Rockfall hazardassessment along a road in the Sorrento peninsula,Campania,southern Italy[J].Natural Hazards,2012,61(1):187~201.
    [15]Tunusluoglu M,Zorlu K.Rockfall hazard assessment in a culturaland natural heritage(Ortahisar Castle,Cappadocia,Turkey)[J].Environmental Geology,2009,56(5):963~972.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心