建筑用抗震钢高应变低周及超低周疲劳性能研究进展
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
近年来全国各地高层建筑迅猛发展,同时我国已经进入第五个地震活动期,这对建筑用钢的高应变低周、超低周疲劳性能提出了严峻的挑战。用于制作抗震构件的低屈服点钢,作为抗震用钢的新钢种将会得到越来越广泛的应用。为此,本文介绍了国内外建筑抗震用钢的高应变低周、超低周疲劳研究现状,着重阐述了低屈服点钢的研发及其低周疲劳性能研究状况,探讨了提高钢抗震性能的措施,并指出了今后国内抗震用钢低周、超低周疲劳研究的方向,为进一步提高建筑用抗震钢的综合抗震性能提供借鉴。
In recent years,high-rise buildings are rapidly developing nationwide.Because our country has entered the fifth seismic active period,high strain low cycle fatigue(LCF) and extremely low cycle fatigue(ELCF) properties of anti-seismic building steel are facing severe challenges.As a new type of anti-seismic steel,low yield point(LYP) steel used to the fabrication of anti-seismic components are applying more and more widely.In this connection,this paper presents the status quo of advances in research on HSLC fatigue and ELCF properties of anti-seismic building steel,especially on the development and HSLC fatigue properties of LYP steel,discusses the measures to improve seismic performance of building steel,and puts forward the research tendencies of LCF and ELCF properties of anti-seismic building steel.
引文
[1]谢仕柜.推进高强钢筋的发展[C]//新三级钢筋推广暨钒微合金化技术研讨会文集.成都:华冶信息研究所,2002:12-14.
    [2]李洪岩,金学军,许荣昌.建筑用抗震钢研究概述[J].莱钢科技,2008(3):5-8.
    [3]盛光敏,龚士弘.关于地震设防区建筑结构用钢的几点意见[J].自然灾害学报,1995,4(1):51-54.
    [4]阎兴华,韩淼.工程结构抗震设计[M].北京:中国计量出版社,2000:18-19.
    [5]秦斌,盛光敏,龚士弘.HRB400抗震钢筋的综合性能[J].钢铁研究学报,2006,18(5):33-37.
    [6]侯中宇,刘喜明,陈荣敏,等.抗地震用建筑结构钢的显微组织及成分设计[J].金属热处理,2003,28(4):21-24.
    [7]温东辉,宋凤明.低屈服点钢在建筑抗震设计中的应用[J].宝钢技术,2007(2):9-12.
    [8]龚士弘,盛光敏.地震区建筑用钢的韧性对建筑物抗震性能的影响[J].工程抗震,2004(3):41-47.
    [9]龚士弘,辛义德.地震区建筑结构钢的抗震性能问题[J].工程抗震,1987(3):31-35.
    [10]巴恩比J T.疲劳[M].北京:科学出版社,1984.
    [11]Nishimura T,Miki C.Strain controlled lowcycle fatigue behavior ofstructural steels[J].Proceedings of the Japan society of civil engi-neers,1978(279):29-44.
    [12]Shimada K,Komotori J,Shimizu M.The applicability of the Man-son-Coffin law and Miner s law to extremely low cycle fatigue[J].Journal of the Japan Society of Mechanical Engineers,1987,53(491):1178-1185.
    [13]Komotori J,Shimizu M.Mircostructural effect controlling exhaustionof ductility in extremely low cycle fatigue[J].Journal of the JapanSociety of Mechanical Engineers,1991,57(544):2879-2883.
    [14]Masatoshi K.Extremely lowcycle fatigue life prediction based on anew cumulative fatigue damage model[J].International Journal ofFatigue,2001,24(6):699-703.
    [15]Kuwamura H.Transition between fatigue and ductile fracture insteel[J].Journal of structural Engineering,ASCE,1997,123(7):864-870.
    [16]Mander J B,Panthaki F D,Kasalanati A.Low-Cycle fatigue behav-ior of reinforcing steel[J].Journal of Materials in Civil Engineer-ing,ASCE,1994,6(4):453-468.
    [17]Liu W C,Liang Z,Lee G C.Low-cycle Bending-Fatigue strength ofsteel bars under random excitation.Part I:Behavior[J].Journal ofStructural Engineering,ASCE,2005,131(6):913-918.
    [18]Liu W C,Liang Z,Lee G C.Low-cycle Bending-Fatigue strength ofsteel bars under random excitation.Part II:Design Considerations[J].Journal of Structural Engineering,ASCE,2005,131(6):919-923.
    [19]Seto A,Masuda T,Machida S,Miki C.Very low cyclic fatigueproperties of butt welded joints containing weld defects[J].Quar-terly Journal of the Japan Welding Society,1999,17(1):130-138.
    [20]Madi Y,Matheron P,Recho N,Mongabure P.Low cycle fatigue ofwelded joints:newexperimental approach[J].Nuclear Engineeringand Design,2004,228(1-3):161-177.
    [21]Sakano M,Wahab MA.Extremely lowcycle(ELC)fatigue crack-ing behaviour in steel bridge rigid frame piers[J].Journal of Mate-rials Processing Technology,2001,118:36-39.
    [22]Tateishi K,Hanji T.Low cycle fatigue strength of butt welded steeljoint by means of newtesting system with image technique[J].In-ternational Journal of Fatigue,2004,26(12):1349-1356.
    [23]Hanji T,Tateishi K,Minami K,Kitoh K.Extremely low cycle fa-tigue assessment for welded joints based on peak strain approach[J].Journal of Structural Mechanics and Earthquake Engineer-ing,JSCE,2006,I-74(808):137-145.
    [24]Chi WM,Kanvinde AM,Deierlein G G.Prediction of ductile frac-ture in steel connections using SMCS criterion[J].Journal ofStructural Engineering,ASCE2006,132(2):171-181.
    [25]Nip K H,Gardner L,Davies C M,Elghazouli A Y.Extremely lowcycle fatigue tests on structural carbon steel and stainless steel[J].Journal of Constructional Steel Research,2010,66(1):96-110.
    [26]Matsui N,Ge HB.Evaluation of Strain Concentration for Predictionof Ductile Crack Initiation in Steel Bridge Piers[C]//Proceedingsof the Eighth International Summer Symposium,Japan Nagoya,2006:31-34.
    [27]Kanvinde A M,Deierlein G G.Cyclic void growth model to assessductile fracture initiation in structural steels due to ultra low cyclefatigue[J].Journal of Engineering Mechanics,ASCE 2007,133(6):701-712.
    [28]Tateishi K,Hanji T,Minam K.A prediction model for extremelylowcyclefatigue strength of structural steel[J].International Jour-nal of Fatigue,2007,29(5):887-896.
    [29]Xue L.Aunified expression for lowcycle fatigue and extremely lowcycle fatigue and its implication for monotonic loading[J].Inter-national Journal of Fatigue,2008,30(10-11):1691-1698.
    [30]Masayuki Kamaya.Fatigue properties of316 stainless steel and itsfailure due to internal cracks in low-cycle and extremely low-cyclefatigue regimes[J].International Journal of Fatigue,2010,32(7):1081-1089.
    [31]岩田卫.动的外乱に对する设计の展望[J].日本建筑学会,1996(11):294-297.(柯林译,陈敏校.抗震建筑结构用钢材[J].国外科技动态,1997(8):16-27.)
    [32]Tanemi YAMAGUCHI,Toru TAKEU-CHI,Toshimichi NAGAO,etc.Seismic Control Devices Using Low-Yield-Point Steel[J].Nippon Steel Technical Report,1998,77:65-72.
    [33]Ming-Hsiang Shih,Wen-Pei Sung.A model for hysteretic behaviorof rhombic low yield strength steel added damping and stiffness[J].Computers and Structures,2005,83(12-13):895-908.
    [34]Susantha K A S,Aoki Tetsuhiko,Kumano Takushi,et al.Applica-bility of low yield strength steel for ductility improvementof steelbridge piers[J].Engineering Structures,2005,27(7):1064-1073.
    [35]盛光敏,龚士弘,彭侃.高应变低周疲劳的能量分析方法[J].重庆大学学报,1993,16(6):109-113.
    [36]秦斌,盛光敏,龚士弘.20MnSiVHRB400钢筋的低周疲劳性能分析[J].重庆大学学报,2003,26(7):93-96.
    [37]龚士弘,辛义德,胡贻苏.钢筋的高应变低周疲劳性能[J].钢铁,1987,22(5):41-47.
    [38]廖洪军,盛光敏,龚士弘,等.Hrb400钢筋抗震性能研究[J].钢铁钒钛,2005,26(4):12-16.
    [39]陈伟,苏鹤洲,李金柱.钒氮微合金化hrb400抗震钢筋的研制[J].云南冶金,2007,36(5):36-40.
    [40]盛光敏,龚士弘,鄢如恢.工程结构钢在地震载荷下的高应变低周疲劳性能[J].钢铁钒钛,1991,12(1):31-38.
    [41]龚士弘,盛光敏.微钒钛高抗震建筑结构钢在抗震设计中的应用[J].钢铁钒钛,1995,16(4):8-13
    [42]王栓柱.金属疲劳[M].福建:福建科学技术出版社,1986.
    [43]闵杰,盛光敏,吴结才,等.热轧H型钢的高应变低周疲劳性能研究[J].钢铁研究学报,2009,21(11):41-44.
    [44]国家专利局发明专利.高抗震建筑结构钢及其生产工艺[P].1998年2月28日
    [45]龚士弘,辛义德,盛光敏.钒对低碳钢形变时效的影响[J].钢铁钒钛,1983(4):71-75.
    [46]盛光敏,龚士弘.抗震设计中的钢应变时效脆性问题[J].工程抗震,1994(1):26-31.
    [47]龚士弘,盛光敏,等.微钒钛高抗震性能建筑结构钢及其控轧工艺[J].钢铁,1998,33(11):30-33.
    [48]杨才福,张永权,柳书平.钒氮微合金化钢筋的强化机制[J].钢铁,2001,36(5):55-57.
    [49]张永权,杨才福,柳书平.钒氮微合金化钢筋的研究[J].钢铁钒钛,2000,21(3):12-14.
    [50]龚士弘,盛光敏,等.微钒钛高抗震建筑结构钢低周疲劳性能[J].钢铁,2001,36(5):51-54.
    [51]龚士弘,盛光敏,等.减震器用钢研究[J].钢铁,2001,36(9):55-61.
    [52]秦斌,盛光敏,龚士弘.HRB400抗震钢筋韧脆转变温度测试分析[J].钢铁钒钛,2003,24(4):59-63.
    [53]吴比,盛光敏,龚士弘,等.钒对HRB400钢筋应变时效及冲击性能的影响[J].钢铁研究,2004(3):10-12.
    [54]蒲玉梅,吴林,吴结才.Q235B、Q345BH型钢综合抗震性能试验研究[J].安徽冶金,2005(4):1-5.
    [55]王威,吕西林,徐崇恩.低屈服点钢在结构振动与控制中的应用研究[J].结构工程师,2007,23(6):83-93.
    [56]刘瑞,李玉顺.极低屈服点钢材在耗能减震控制中的应用[J].低温建筑技术,2006(2):52-53.
    [57]倪志军,刘孝荣,温东辉,等.建筑抗震用低屈服点钢厚板的生产与应用[J].工程抗震与加固改造,2009,31(6):129-133.
    [58]宋凤明,温东辉,李自刚.抗震用极低屈服点刚组织和性能研究[J].材料热处理技术,2008,37(22):28-31.
    [59]温东辉,宋凤明,等.建筑抗震用低屈服点钢的生产与应用[J].建筑钢结构进展,2009,11(5):16-19.
    [60]温东辉,宋凤明,等.抗震用低屈服点钢低周疲劳性能[C]//2009年第七届中国钢铁年会论文集.北京:2009:337-341.
    [61]宋凤明,温东辉,李自刚.225MPa级抗震用低屈服点钢的开发[J].材料热处理技术,2009,38(12):62-63.
    [62]屈朝霞,许磊,温东辉.宝钢低屈服点钢BLY225的焊接性能[J].建筑钢结构进展,2009,11(5):20-24.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心