基于广义塑性理论的堆石料动力本构模型研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
分析了堆石料在等幅与不等幅应力循环荷载作用下的变形特性,以此为基础,确定了不同加载过程中堆石料的剪胀方程、加载方向、切线模量及塑性模量,建立了一个可以考虑堆石料循环加载特性的广义塑性本构模型。模型将所有的加卸载阶段都视为弹塑性过程,并在剪胀方程中引入老化函数来考虑体积应变积累对剪胀(缩)性的影响。模型共有12个参数,均可通过常规室内单调及循环加载试验确定。为验证模型的有效性,依据试验资料确定了两种不同堆石料的本构模型参数,并对等幅循环三轴压缩与不等幅循环三轴压缩试验进行了模拟。两种材料在不同围压下的模型预测结果与试验数据均吻合良好,表明模型可以有效地反映循环荷载作用下堆石料应力应变曲线的滞回特性与永久变形的积累。
The stress-strain behaviors of typical rockfill materials under cyclic loading with constant and variable stress amplitudes are analyzed.The stress-dilatancy equations,loading directions,tangential modulus and the representations of plastic modulus are derived based on experimental observations,and a generalized plasticity model is proposed to simulate the dynamic behaviours of rockfill materials.The model treats all the loading-unloading-reloading phases as elastoplastic ones and captures the hardening effects(the influences of the accumulated volumetric strain on the dilatancy and the overall stress strain behaviour) during cyclic loading by incorporating an aging function into the stress-dilatancy equations.There are totally 12 parameters involved in the proposed model,all of which can be determined by the conventional monotonic and cyclic tests.To check the validity of the proposed model,the parameters of two rockfill materials are calibrated based on the experimental data,and the typical cycle triaxial compression tests with constant and variable stress amplitudes are modeled.Satisfactory agreement between the numerical and experimental results under different confining pressures confirms the capability of the proposed model in capturing the hysteretic stress-strain behaviours and the accumulation of permanent deformation under cyclic loading effectively.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,1988.(HUYu-xian.Earthquake engineering[M].Beijing:EarthquakePress,1988.(in Chinese))
    [2]陈生水,霍家平,章为民.“5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J].岩土工程学报,2008,30(6):795–801.(CHEN Sheng-shui,HUO Jia-ping,ZHANG Wei-min.Analysis of effects of‘5.12’Wenchuanearthquake on Zipingpu concrete face rockfill dam[J].Chinese Journal of Geotechnical Engineering,2008,30(6):795–801.(in Chinese))
    [3]刘汉龙,秦红玉,高玉峰,等.堆石粗粒料颗粒破碎试验研究[J].岩土力学,2005,26(4):562–566.(LIU Han-long,QIN Hong-yu,GAO Yu-feng,et al.Experimental study onparticle breakage of rockfill and coarse aggregates[J].Rockand Soil Mechanics,2005,26(4):562–566.(in Chinese))
    [4]陈生水,韩华强,傅华.循环荷载作用下堆石料应力变形特性研究[J].岩土工程学报,2010,32(8):1151–1157.(CHEN Sheng-shui,HAN Hua-qiang,FU Hua.Stress anddeformation behaviors of rockfill under cyclic loadings[J].Chinese Journal of Geotechnical Engineering,2010,32(8):1151–1157.(in Chinese))
    [5]SCHOFIELD A,WROTH P.Critical state soil mechanics[M].London:McGraw-Hill,1968.
    [6]KOLYMBAS D.Introduction to hypoplasticity[M]//Advancesin Geotechnical Engineering and Tunneling.Rotterdam:BALKEMA,2000.
    [7]MATSUOKA H,SUN D A.The SMP concept-based 3Dconstitutive models for geomaterials[M].London:Taylor&Francis,2006.
    [8]YAO Y P,HOU W,ZHOU A N.UH model:three-dimensionalunified hardening model for overconsolidated clays[J].Géotechnique,2007,57(5):451–469.
    [9]KIM M K,LADE P V.Single hardening constitutive model forfrictional materials I.Plastic potential function[J].Computersand Geotechnics,1988,5(4):307–324.
    [10]KIM M K,LADE P V.Single hardening constitutive modelfor frictional materials II.Yield criterion and plastic workcontours[J].Computers and Geotechnics,1988,6(1):13–29.
    [11]KRAMER S L.Geotechnical earthquake engineering[M].New Jersey:Prentice Hall,1996.
    [12]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005.(LIU Xiao-sheng,WANG Zhong-ning,WANG Xiao-gang,etal.Large-scale shaking table tests and seismic responseanalysis for concrete faced rockfill dams[M].Beijing:ChinaWater Power Press,2005.(in Chinese)).
    [13]PASTOR M,ZIENKIEWICZ O C,CHAN A H C.Generalized plasticity and the modelling of soil behaviour[J].International Journal for Numerical and Analytical Methodsin Geomechanics,1990,14(3):151–190.
    [14]LING H I,YANG S T.Unified sand model based on thecritical state and generalized plasticity[J].Journal ofEngineering Mechanics,2006,132(2):1380–1391.
    [15]LING H I,LIU H B.Pressure-level dependency anddensification behaviour of sand through generalized plasticitymodel[J].Journal of Engineering Mechanics,2003,129(8):851–860.
    [16]PRADHAN T B S,TATSUOKA F,SATO Y.Experimentalstress-dilatancy relations of sand subjected to cyclicloading[J].Soils and Foundations,1989,29(1):45–64.
    [17]PRADHAN T B S,TATSUOKA F.On stress-dilatancyequations of sand subjected to cyclic loading[J].Soils andFoundations,1989,29(1):65–81.
    [18]陈生水,傅中志,彭成.考虑颗粒破碎的堆石料广义塑性本构模型[J].岩土工程学报,2011,33(10):1489–1495.(CHEN Sheng-shui,FU Zhong-zhi,PENG Cheng.Ageneralized plasticity model for rockfill materials consideringparticle breakage[J].Chinese Journal of GeotechnicalEngineering,2011,33(10):1489–1495.(in Chinese))
    [19]NISHI K,KANATANI M.Constitutive relations for sandunder cyclic loading based on elasto-plasticity theory[J].Soils and Foundations,1990,30(2):43–59.
    [20]MATSUOKA H,YAO Y P,SUN D A.The Cam-clay modelsmodified by the SMP criterion[J].Soils and Foundations,1999,39(1):81–95.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心