考虑混凝土结构实际滞回性能的R-μ-T规律分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
单自由度体系R-μ-T规律是基于性能的抗震设计理论中的基本规律之一。以往大多研究者认为滞回模型对R-μ-T规律没有影响,但这些研究中采用的滞回模型都是理想化模型,并没有考虑实际结构的滞回性能。为了弥补R-μ-T规律研究中的这个缺陷,分别采用考虑刚度退化的两折线理想模型和考虑钢筋混凝土结构实际滞回性能的三折线模型,利用非弹性时程分析手段,计算周期从0.05~10 s的单自由度体系的R-μ-T关系,分析了2种不同滞回模型对R-μ-T规律的影响。结果表明:当采用更贴近混凝土结构实际力学特征的三折线滞回模型时,在R相同的条件下,结构的延性需求μ有偏小的趋势;当结构自振周期较长时,采用传统的"等位移原理"是偏保守的。
R-μ-T relationship of single-degree-of-freedom(SDOF) system is one of the principal laws in performance-based anti-seismic design.In most of previous studies,it was generally concluded that the hysteretic model used in analysis has no effect on the R-μ-T law.However,the hysteretic model used in these studies is idealized and does not take into account the actual hysteretic behaviors of reinforced concrete structures.To make up this deficiency in previous studies,a series of inelastic time history analyses are conducted with two different hysteretic models,i.e.,the idealized degrading bilinear model and the Takeda degrading tri-linear model.Then the R-μ-T relationships of different SDOF systems with the fundamental period from 0.05 s to 10 s are explored,and the effects of hysteretic models on the R-μ-T relationship are investigated.The results indicated that compared with the results based on idealized degrading bilinear model,the ductility demands(μ) of SDOF systems decrease to some extent when a more practical Takeda hysteretic model is adopted,and the traditional "equal displacement rule" may be conservative for the structures with a long fundamental period.
引文
[1]Bertero V V.Performance-based seismic engineering:a critical review of proposed guidelines[C]//Proceedings of The International Workshop on Seismic Design Methodologies for the Next Generation of Codes.Bled/Slovenia,1997:24-27.
    [2]Newmark N M,Hall W J.Earthquake Spectra and Design[M].Oakland,California,USA:EERI Monograph Series,Earthquake Engineering Research Institute,1982.
    [3]Nassar A A,Krawinkler H.Seismic demands for SDOF and MDOF systems Report No.95[R].California:Blume Earthquake Engineering Center,Stanford University,Stanford,California,1991:12-45.
    [4]Miranda E,Bertero V V.Evaluation of strength reduction factor for earthquake-resistance design[J].Earthq Spectra,1994,10(2):357-379.
    [5]Vidic T,Fajfar P,Fischinger M.Consistent inelastic design spectra:strength and displacement[J].Earthq Eng Struct Dynam,1994,23(3):507-521.
    [6]Borzi B,Elnashai AS.Refined force reduction factors for seismic design[J].J Eng Struct,2000,22(10):1244-1260.
    [7]卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84-88.Zuo Weidong,Fan Lichu.Studies on strength reduction factors in seismic design of structures[J].Earthq Eng Eng Vib,2001,21(1):84-88.(in Chinese)
    [8]翟长海.最不利设计地面运动及强度折减系数研究[D].哈尔滨:哈尔滨工业大学,2004.Zai Changhai.Study on the Severest Design Ground Motions and the Strength Reduction Factors[D].Harbin:Harbin University of Technology,2004.(in Chinese)
    [9]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):39-48.Lv Xilin,Zhou Dingsong.Ductility demand spectra and inelastic displacement spectra considering soil conditions and design characteristic periods[J].Earthq Eng Eng Vib,2004,24(1):39-48.(in Chinese)
    [10]白绍良,李刚强,李英民,等.从R-μ-T关系研究成果看我国钢筋混凝土结构的抗震措施[J].地震工程与工程振动,2006,26(5):144-151.Bai Shaoliang,Li Gangqiang,Li Yingmin,et al.Seismic measures for RC structures in view of R-μ-T relations[J].Earthq Eng Eng Vib,2006,26(5):144-151.(in Chinese)
    [11]Santa-Ana P R,Miranda E.Strength reduction factors for multi-degree-of-freedom systems[C]//Proc12th WCEE,IAEE,Auckland.New Zealand,2000:1446.
    [12]Moghaddam H,Mohammadi R K.Ductility reduction factor of MDOF shear-building structures[J].J Earthq Eng,2001,5(3):425-440.
    [13]Elnashai A S,Mwafy A M.Overstrength and force reduction factors of multistory reinforced-concrete buildings[J].Struct Design Tall Build,2002,11(5):329-351.
    [14]Takeda T,Sozen M A,Nielson N N.Reinforced concrete response to simulated earthquakes[J].J Struct D,ASCE,1970,96(12):2557-2573.
    [15]Panagiotakos T B,Fardis M N.Deformations of reinforced concrete members at yielding and ultimate[J].ACI Struct J,2001,98(2):135-148.
    [16]韦锋.钢筋混凝土框架和框架-剪力墙结构非弹性地震反应性态的识别[D].重庆:重庆大学,2005.Wei Feng.Verification on Inelastic Seismic Response Performance of Reinforced Concrete Frame Structures and Frame-Wall Structures[D].Chongqing:Chongqing University,2005.(in Chinese)
    [17]吕红山,赵凤新.适用于中国场地分类的地震动反应谱放大系数[J].地震学报,2007,29(1):67-76.LüHongshan,Zhao Fengxin.Site coefficients suitable to china site category[J].Acta Seismol Sin,2007,29(1):67-76.(in Chinese)
    [18]中华人民共和国住房和城乡建设部,混凝土结构设计规范(GB50010—2010)[S].北京:中国建筑工业出版社,2010.Ministry of Housing and Urban-Rural of the People’s Republic of China,Code for design of concrete structures(GB50010—2010)[S].Beijing:ChinaArchitecture&Building Press,2010.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心