应力波作用下节理面前后电磁辐射强度的变化
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
从压电体中的压电本构方程出发,得到了含石英等压电介质岩体在应力波作用下产生的电场值的关系表达式.电磁辐射强度随电阻率增大而增大,随传播距离发生衰减.对于电阻率较大导电性能较差的岩石来说,压电电荷的贡献是足够引起重视的.利用所得到的表达式对实际地震电磁信号幅值进行了估算,所得结果与实测结果吻合.依据所得到的电场值的表达式及应力波在节理面处的透射解,获得了垂直入射应力波作用下产生的电磁波在线性变形节理面前后的强度关系.研究了节理参数、岩体电性参数以及入射波频率对节理面前后电磁辐射强度的影响.结果表明,电磁辐射的强度随节理初始刚度增大而增大;对于节理面两侧岩体性质不同的情形,从理论上讲,电磁辐射强度随单个参数的变化是明确的,但在多种参数的综合影响下,电磁辐射强度变化情况相对比较复杂.本文的理论计算结果与其它众多学者得出的实验结果一致.
Based on the piezoelectric constitutive relation in piezoelectric body,the expression of electric field was obtained in piezoelectric rock under stress wave action.The intensity of EME increases with the increase of electric resistivity and decays with the propagation distance.The contribution of the piezoelectric charges is significant for the rock with large resistivity.Using the obtained expression to estimate the EME induced by real earthquakes,the calculated result agrees with the observation.According to the obtained expression and the solution of transmission coefficients of stress wave at the joints,the variation of EME intensity on front and back side of the joint,when a normally incident stress wave propagates through the linear deformative joint,is derived.The influence of joint parameters,the electric parameters of rock masses and the frequency of incident wave on the variation of EME intensity are investigated.The result shows that the EME intensity increases with the increase of joint stiffness.When the rock property on the two sides of the joint is different,the EME intensity clearly vary with a single joint parameter.However,the variation of EME intensity becomes complicated under the influence of many parameters.The theoretical derivation of this paper agrees with the experiment results of other researchers.
引文
关华平,肖武军.2004.电磁辐射仪“EMAOS”观测结果原理及震例[J].地震,24(1):96--103.
    郭子祺,郭子强.1999.岩石破裂中多裂纹辐射模型[J].地球物理学报,42(增刊):172--177.
    郭自强,周大庄,施行觉,马福胜,席道瑛,程纯杰,周志文.1988.岩石破裂中的电子发射[J].地球物理学报,31(5):566--571.
    黄清华,刘涛.2006.新岛台地电场的潮汐响应与地震[J].地球物理学报,49(6):1745--1754.
    金安忠,赵强,刘希强,张继红,姜枚,王寅生,刘煜洲.1997.小尺度岩石爆破引起电磁辐射的野外实验观测结果[J].地震学报,19(1):45--50.
    江学良,曹平.2007.边坡动态施工的有限元模拟与稳定性评价[J].地下空间与工程学报,3(2):350--355.
    李夕兵,古德生.1992.应力波和电磁波在岩体中相互耦合的研究[J].中南矿冶学院学报,23(3):260--266.
    李振生,刘德良,刘波,杨强,李景明.2005.断层封闭性的波速和品质因子评价方法[J].科学通报,50(13):1365--1369.
    刘敦文,古德生,徐国元,黄仁东.2005.采空区充填物探地雷达识别技术研究及应用[J].北京科技大学学报,27(1):13--16.
    刘煜洲,刘因,王寅生,金安忠,傅建民,曹静平.1997.岩石破裂时电磁辐射的影响因素和机理[J].地震学报,19(4):418--425.
    钱复业,赵玉林,赵跃臣,沈启兴,徐忠信.1996.地电短临前兆产生机理及一种新的短临预报方法(谐振预报法)[J].华北地震科学,14(3):1--8.
    钱书清,任克新,吕智.1996.伴随岩石破裂的VLF,MF,HF和VHF电磁辐射特性的实验研究[J].地震学报,18(3):346--351.
    钱书清,郝锦绮,周建国,高金田,王玫玲,梁静.2001.1999年9月21日台湾集集MS7.4地震前ULF电磁信号及其与模拟实验的比较[J].地震学报,23(3):322--327.
    王继军,赵国泽,詹艳,卓贤军,汤吉,关华平,万战生.2005.中国地震电磁现象的观测与研究[J].大地测量与地球动力学,25(2):11--21.
    王炽仑,杨仲乐,陈以旭,周金才,黄景汉,金祥瑞.1992.岩石破裂时的电磁辐射[J].地球物理学报,35(增刊):287--291.
    肖红飞,何学秋,冯涛,王恩元.2005.基于FLAC2D模拟的矿山巷道掘进煤岩变形[J].岩石力学与工程学报,24(13):2304--2309.
    徐小荷,邢国军,王标.1998.岩石中应变波激发的电磁效应[J].地震学报,20(1):96--100.
    杨少峰,陈宝生,杜爱民,宁学荣,肖福辉,洪福元.1998.新疆喀什地区地震前地磁脉动异常分析[J].地球物理学报,41(3):334--341.
    张颖.2006.电磁辐射与地震关系的研究[J].地震地磁观测与研究,27(2):39--42.
    赵玉林,卢军,李正南,钱复业,张洪魁.1996.唐山地震应变-电阻率前兆及虚错动模式[J].地震学报,18(1):78--82.
    郑联达.1990.地震电磁波发射的一种机制[J].地震学报,12(1):78--85.
    朱元清,罗祥清,郭自强.1991.岩石破裂时电磁辐射机理研究[J].地球物理学报,34(4):594--601.
    胜山邦久(著).1987.冯夏庭(译).1996.声发射AE技术的应用[M].北京:冶金工业出版社:52--54.
    Auld B A(著).1973.孙承平(译).1982.固体中的声场和波[M].北京:科学出版社:265.
    Bandis S C,Lumsen A C,Barton N R.1983.Fundamentals of rockjoint deformation[J].Int J Rock Mech Min Sci Geo-mech Abstr,20(6):249--268.
    Bernard P.1992.Plausibility of long electrotelluric precursors to earthquakes[J].J Geophys Res,97B:17531--17546.
    Brady B T,Rowell G A.1986.Laboratory investigation of the electrodynamics of rock fracture[J].Nature,321:488--492.
    Fenoglio M A,Johnston MJ S,Byerlee J D.1995.Magnetic and electric fields associated with changesin high pore pres-sure in fault zones:Application to the Loma Prieta ULF emissions[J].J Geophys Res,100B:12951--12958.
    Fujinawa Y,Takahashi K.1998.Electromagnetic radiations associated with major earthquakes[J].Phys Earth PlanetInter,105:249--259.
    Gernets A A,Makarets M V,Koshevaya S V,Grimalsky V V,Romero DJuarez,Kotsarenko A N.2004.Electromag-netic emission caused by the fracturing of piezoelectric crystals with an arbitrarily oriented moving crack[J].PhysChem Earth,29:463--472.
    Gokhberg MB,Morgounov V A,Yoshino T,Tomizawa I.1982.Experimental measurement of electromagnetic emissionpossibly related to earthquakes in Japan[J].J Geophys Res,87(B9):7824--7828.
    Gokhberg MB.1988.Static model of distributed emitters[J].Transactions(Doklady)of USSR academy of sciences:Earth Science Section,302(5):1--3.
    Huang Q.2002.One possible generation mechanism of co-seismic electric signals[J].Proc Japan Acad,78(7):173--178.
    Kopytenko Y A,Nikitina L V.2004.ULF oscillations in magma in the period of seismic event preparation[J].PhysChem Earth,29:459--462.
    Ogawa T,Utada H.2000.Coseismic piezoelectric effects due to a dislocation1.An analytic far and early-time field solu-tionin a homogeneous whole space[J].Phys Earth Planet Inter,121:273--288.
    Pyrak-Nolte LJ.1996.The seismic response of fractures and theinterrelations amongfracture properties[J].Int J RockMech Min Sci,33(8):787--802.
    Surkov V V,Uyeda S,Tanaka H,Hayakawa M.2002.Fractal properties of mediumand seismoelectric phenomena[J].J Geodynamics,33:477--487.
    Warwick J W,Stoker C,Meyer T R.1982.Radio emission associated with rockfacture:Possible applicationto the greatChilean earthquake of May22,1960[J].J Geophys Res,87:2851--2859.
    Yoshida S,Manjgaladze P,Zilpimiani D,Ohnaka M,Nakatani M.1994.Electromagnetic emissions associated withfric-tional sliding of rock[M]∥Hayakawa M,Fujinawa Yeds.Electromagnetic Phenomena Relatedto Earthquake Pre-diction.Tokyo:Terra Scientific Publishing Company:307--322.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心