环境激励下基础隔震结构的主要动力特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过对两栋基础隔震建筑在环境激励下的振动测试,运用随机子空间识别法和有理分式多项式法分别识别了结构的模态频率、振型和模态阻尼比。识别结果表明在环境激励下,基础隔震结构的基本频率远大于设计计算多遇地震工况下的基本频率;等效黏滞阻尼比很小,与未隔震结构的阻尼比相当,可以将基础隔震结构视为经典的比例阻尼系统。进一步以其中一栋为研究对象,以识别的模态参数作为修正基准,采用多目标优化的方法反演了环境激励下隔震层的实际水平等效刚度,结果表明其值为多遇地震下计算刚度取值的10.9倍。最后,基于反演的实际隔震层的水平等效刚度对结构的初始有限元模型进行了修正,并对修正后的模型进行了数值分析,分析结果与实际测试结果的对比表明修正后的模型可以更好地反映基础隔震结构在环境激励下的动力特性。
Ambient vibration tests were conducted on the two base-isolated buildings.Modal frequencies,mode shapes and modal damping ratios were identified using stochastic subspace identification(SSI) and rational fraction polynomial(RFP) methods.The identified results show that under ambient excitation,fundamental frequencies of these two base-isolated structures are much larger than the values under frequently occurring earthquake level.And the equivalent viscous damping ratio is as low as the value of non-isolated structure,so base-isolated structures can be considered as classical proportional damping system under ambient excitation.Furthermore,taking one of the two buildings as study case,identified modal parameters were used as the updating benchmark and the actual equivalent horizontal stiffness of isolation layer was estimated inversely using the multi-objective optimization method.The results show that the actual stiffness value is 10.9 times of that in the design case under frequently occurring earthquake level.Finally,the preliminary finite element model were updated based on the inversely estimated stiffness of the isolation layer and the updated model was analyzed numerically.Comparison of the results between analysis and test indicates that the updated model can represent the dynamic characteristics of the base-isolated structure under ambient excitation more reliably.
引文
[1]莫庸,金建民,杜永峰,等.高烈度地震区建筑结构选型问题的初步探讨———5.12汶川大地震陇南地区建筑结构震害考察中结构选型问题的思考[J].工程抗震与加固改造,2008,30(4):50-55.
    [2]GB50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [3]Skinner R I,Robinson W H,Mcverry G H.工程隔震概论[M].谢礼立,周雍年,赵兴权,译.北京:地震出版社,1996.
    [4]Ventura C E,Finn W D L,Lord J F,et al.Dynamiccharacteristics of a base isolated building from ambientvibration measurements and low level earthquake shaking[J].Soil Dynamics and Earthquake Engineering,2003,23(4):313-322.
    [5]Han J P,Lu X L,Wang F X.Comparison of modal parameteridentification algorithms based on shaking table model testdata[C]//The International Society for Optical Engineering,2009:73750K-1-7.
    [6]Overschee P V,Moor B D.Subspace identification for linearsystems:theory,implementation,applications[M].Dordrecht:Kluwer Academic Publishers,1996.
    [7]Juang J N.Applied system identification[M].EnglewoodCliffs:Prentice-Hall Inc,1994.
    [8]Allemang R J,Brown D L.A correlation coefficient for modalvector analysis[C].Proceedings of the First InternationalModal Analysis Conference(IMAC),Orlando,Florida;1982.
    [9]杜永峰,李慧,Spencer B F,等.非比例阻尼隔震结构地震响应的实振型分解法[J].工程力学,2003,20(4):24-32.
    [10]Pines D,Salvino L.Structural health monitoring usingempirical mode decomposition and the Hilbert phase[J].Journal of Sound and Vibration,2006,294(1-2):97-124.
    [11]Ceravolo R.Use of instantaneous estimators for the evaluationof structural damping[J].Journal of Sound and Vibration,2004:385-401.
    [12]明图章,胡光伟,黄卫.大跨径钢桥面铺装体系多目标优化设计[J].土木工程学报,2007,40(2):70-73.
    [13]任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型[J].计算力学学报,2007,24(5):609-613.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心