特高压输电塔结构动力分析及风振响应研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
特高压输电铁塔具有高度高、体系柔、对水平风荷载敏感的特点。以1000 kV特高压工程实例为研究对象,对输电铁塔进行了自振特性分析,验证了结构布置的合理性,利用随机振动线性滤波器理论模拟生成脉动风荷载,以求出风振系数,并将求出的结果与当前规范计算值进行对比。通过对比可知当前规范计算值无法准确反映输电铁塔的结构特点。将按照不同方法求得的风振系数代入有限元模型进行静力求解,并将得出的主材内力进行对比分析后,提出利用GB5 009—2012《建筑结构荷载规范》求得的风振系数对特高压输电铁塔进行设计计算较为合理、安全。
UHV power transmission towers are featured by high height,soft structures and being sensitive to horizontal wind loads.Taking 1 000 kV UHV transmission tower project as a research object,the self vibration characteristics of transmission towers was analyzed,and the rationality of the structural arrangement was verified.Then,the fluctuating wind load was simulated based on the random vibration theory of linear filter to obtain wind vibration coefficient,whose results were compared with the calculated values in current standards.Based on the comparative analysis results,it was found that the calculated values in current standards could not accurately describe the structural characteristics of transmission towers. Finally,the wind vibration coefficients that calculated by different methods were used in finite element models for static solution,as well as the comparative analysis was carried out on the obtained internal forces of main member,which showed that the wind vibration coefficient calculated by 2012 Architectural Structure Load Standard was more reasonable for the design of UHV transmission tower,and the design calculation result was more safe.
引文
[1]梁峰.输电塔的风振控制研究[D].武汉:华中科技大学,2006.
    [2]Moniomura Y,Marukawa H,Okamura T,et al.Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J].Journal of Wind Engineering and Industrial Aerodynamics,1997(72):241 -252.
    [3]杨小强.基于滑动式TMD的大跨越输电塔风振控制[D].北京:北京工业大学,2009:1-2.
    [4]梁正裕,陈艾荣.考虑双非线性影响的大跨越上承式钢拱桥地震响应研究[J].振动与冲击,2009,28(11):139-145.
    [5]Dyrbye C,Hansen S O.结构风荷载作用[M].薛素铎,李雄彦,译.北京:中国建筑工业出版社,2006.
    [6]秦力,袁俊健,李兴元.基于AR法的输电塔线体系风速时程模拟[J],水电能源科学,2011,29(2):169-171.
    [7]lannuzzi.Artificial wind generation and structural response[J]. Journal of Structural Engineering,1987,113(12):928-936.
    [8]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1): 44-52.
    [9]刘锡良,周颖.风荷载的几种模拟方法[J].工业建筑,2005,35 (5):81-84.
    [10]黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [11]中华人民共和国建设部.GB 50009--2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2002.
    [12]西南电力设计院.DL/T 5154—2002架空送电线路杆塔结构设计技术规定[S].北京:水利电力出版社,2002.
    [13]中华人民共和国建设部.GB 50135—2006高耸结构设计规范[S].北京:中国计划出版社,2007:28-30.
    [14]中华人民共和国建设部.GB 50009—2012建筑结构荷载规范[S].北京市:中国建筑工业出版社,2012:57-60.
    [15]刘万群.大跨越输电塔线体系风振响应研究[D].上海:同济大学,2006.
    [16]朱松晔.大跨越输电塔线体系动力特性及风振响应分析[D].上海:同济大学,2003.
    [17]傅鹏程.输电塔结构动力特性及风振系数研究[D].上海:同济大学,2005.
    [18]肖洪伟,李喜来,廖宗高,等.输电线路风荷载调整系数(风振系数)计算探讨[J].电力建设,2007,28(9):33-38.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心