土体中间主应力确定及其对临界值影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
分析比较平面应变状态下中间主应力的各种形式,根据侧限压缩试验的特殊应力应变条件,推导了一个与土性参数有关的中间主应力表达式.该表达式可简单地通过三轴压缩试验所得的参数来确定,同时还可以简单反映土体应力历史对土体强度的影响.将该表达式与SMP准则和Lade准则结合,建立了平面应变状态下土性参数与三轴压缩状态土性参数的关系,通过试验数据的分析比较看出,所得的中间主应力能更好地反映土体的实际性状,对于SMP准则和Lade准则均有很好的适用性.
Through analysing and comparing kinds of the intermediate principal stress forms under plane strain conditions and based on the particular conditions of stress-strain in oedometric experiments,an expression of the intermediate principal stress that is related with parameters of soil properties is deduced and confirmed. The expression is simply confirmed by parameters gained by triaxial compression experiments,and it can also simplly reflect the influence of soil mass stress history on soil strength. By combining SMP criterion and Lade criterion with the expression of the intermediate principal stress,the relationship of parameters of soil properties is established between plane strain state and triaxial compression state. Analysis and comparison of the experiment data show that the intermediate principal stress proposed herein well reflects the practical behavior of the soils mass and is very suitable for SMP criterion and Lade criterion.
引文
[1]BISHOP A W.The strength of soils as engineering materials[J].Geotechnique,1966,16(2):91-130.
    [2]GREEN G E,BISHOP A W.A note on the drained strength of sand under generalized strain conditions[J].Geotechnique,1969,19(1):144-149.
    [3]SHIBATA T,KARUBE D.Influence of the variation of the intermediate principal stress on the mechanical properties of normally consolidated clays[C]∥Proc of Sixth ICSMFE,1965:359-361.
    [4]LADE P V,DUNCAN J M.Cubical triaxial tests on cohesionless soil[J].Journal of the Soil Mechanics and Foundation Engineering Division,ASCE,1973,99(SM10):793-812.
    [5]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.(YU Mao-hong.Twin shear theory and its applications[M].Beijing:Science Press,1998.(in Chinese))
    [6]MATSUOKA H,NAKAI T.Stress deformation and strength characteristics of soil under three difference principal stresses(Discussion)[C]∥Proc of Japan Society of Civil Engineers,1974,232:59-70.
    [7]LADE P V,DUNCAN J M.Elastoplastic stress-strain theory for cohesionless soil[J].Journal of the Geotechnical Engineering Division,ASCE,1975,101(10):1037-1053.
    [8]YAO Yang-ping,LU De-chun,ZHOU An-nan,et al.The generalized non-linear strength theory and transformed stress space[J].Science in China(SerE:Engineering&Materials Science),2004,47(6):691-709.
    [9]李广信,黄永男,张其光.土体平面应变方向上的主应力[J].岩土工程学报,2001,23(3):358-361.(LI Guang-xin,HUANG Yong-nan,ZHANG Qi-guang.The principal stress of soil in the direction of plane strain[J].Chinese Journal of Geotechnical Engineering,2001,23(3):358-361.(in Chinese))
    [10]SATAKE M.Stress deformation and strength characteristics of soil under three difference principal stresses(Discussion)[C]∥Proc of Japan Society of Civil Engineers,1976,246:137-138.
    [11]WROTH C P,HOUBLY G T.Soil mechanics-property characterization and analysis problem procedures[C]∥Proc 11thInt Conf Soil Mech and Found Engrg,ISSMFE,San Francisco,Calif,1985,1,1-55.
    [12]MATSUOKA H,HOSHIKAWA T,UENO K.A general failure criterion and stress-strain retain for granular materials to metals[J].Soil and Foundations,1990,30(2):119-127.
    [13]EWY R.Wellbore-stability prediction by use of a modified Lade criterion[J].SPE Drill Completion,1999,14(2):85-91.
    [14]CORNFORTH D H.Some experiments on the influence of strain conditions on the shear strength of sand[J].Geotechnique,1964,14(2):143-67.
    [15]LEUSSINK H,WITTKE W,WESELOH K.Unterschiede im Scherverhalten rolliger Erdstoffe und Kugelschüttungen im Dreiaxial und Biaxialversuch.New York:Institut f.Bodenmechanik u.Felsmechanik d.Technischen Hochschule Fridericiana,1966.
    [16]ROWE P W.The relationship between the shear strength of sands in triaxial compression,plane strain and direct shear[J].Geotechnique,1969,19(1):75-86.
    [17]GREEN G E,READES D W.Boundary condition anisotropy and sample shape effects on the stress-strain behaviour of sand in triaxial compression and plane strain[J].Geotechnique,1975,25(2):333-356.
    [18]LAM W K,TATSUOKA F.Effects of initial anisotropic fabric and on strength and deformation characteristic of sand[J].Soils Foundations,1988,28(1):89-106.
    [19]SCHANZ T,VERMEER P A.Angles of friction and dilatancy of sand[J].Geotechnique,1996,46(1):75-86.
    [20]RAMAMURTHY T,TOKHI V K.Relation of triaxial and plane strain strengths[C]∥Proc of 10thInt Conf on Soil Mech and Found Eng,Stockholm,1981:755-758.
    [21]李广信.高等土力学[M].北京:清华大学出版社,2004:135.(LI Guang-xin.Advanced soil mechanics[M].Beijing:Tsinghua University Press,2004:135.(in Chinese))檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨殎殎殎殎南京水利科学研究院重大科研成果介绍水工混凝土静动态损伤断裂过程及其声发射特性研究与实践———获2012年度水利部大禹水利科学技术奖一等奖在水利部前期重大项目“地震对大坝灾变机理与对策研究”、国家自然科学基金项目“基于FEMOL的大口径PCCP管结构计算与安全评价”、中央级公益科研院所专项资金重点项目“高坝全级配混凝土动态性能与灾变过程模拟”、南京水利科学研究院院基金项目“高坝混凝土断裂损伤与动力灾变机理研究”等的资助下,历时8年完成的水工混凝土静动态损伤断裂过程及其声发射特性方面研究成果的总结.项目组开发了混凝土损伤断裂精细化测试系统:该系统具有量程大、精度高、多参数同步采集并输出、实时监控兼有声发射量测等功能,取得国家发明专利;历时8年系统开展了各类混凝土静动态损伤断裂过程试验:共计完成了近300根普通混凝土(含标准试件、非标准试件)、钢筋混凝土、碾压混凝土等一系列试件的损伤断裂过程试验,全面分析了强度等级、试件尺寸大小、缝高比、跨高比、配筋率、钢筋位置、钢筋类型、荷载布置等结构与材料变量对不同类型混凝土损伤断裂特性影响规律;利用声发射技术解决了起裂点不易确定的科学问题:通过建立声发射参量与混凝土裂缝起裂、扩展及失稳之间关系以及与不同混凝土损伤演化过程关系,为水工结构损伤断裂评价提供了新方法和手段;通过声发射信号参量与动态荷载下裂缝扩展率的关系,得到了动静态断裂韧度的转化关系式.首次提出了一套可模拟混凝土结构承载能力破坏全过程的数值分析方法-断裂有限元线法,可给出裂缝的动态发展过程,能定量评价出裂缝扩展对结构承载能力的影响程度,得出当试件达到一定尺寸后,尺寸影响消失、断裂韧度趋于一个常数,是材料本身自有的力学特征表征,为工程抗裂设计及其相关规范应用扫清障碍,成果应用于汶川震中武都重力坝混凝土结构的震害受损分析,提出了相应的抗震加固措施;并为南水北调PCCP存在的裂缝对结构安全的影响进行了分析,提供了技术指导与理论依托.本项目取得国家专利5项:发明专利2项、实用新型专利3项.在国内外学术期刊共发表论文近100篇,其中被SCI、EI收录40篇,共出版专著4部,其中英文专著1部.培养博士后、博士、硕士研究生10余名.由水利部国际合作与科技司组织的以中国工程院吴中如院士与孙伟院士为首的鉴定委员会对“水工混凝土静动态损伤断裂过程及其声发射特性研究与实践”成果进行了鉴定(鉴字[2012]第2004号),评价为“该成果取得了多项创新,并已经应用于多项实际工程建设中,取得了显著社会与经济效益,推广应用前景广阔,该项目研究成果整体达到了国际领先水平”.材料结构研究所胡少伟供稿

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心