排架渡槽-水流固耦合体隔震分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
排架渡槽为研究对象,建立3维渡槽-水流固耦合体计算模型,设置板式橡胶隔震支座,通过Mooney-Rivlin应变能密度函数模型模拟橡胶材料的本构,采用任意拉格朗日-欧拉(ALE)方法求解渡槽和水体间的耦合动力作用问题,针对不同水深工况,计算分析渡槽-水流固耦合体自振频率以及在地震作用下的位移、应力和水体晃动波高。研究结果表明:渡槽横槽方向为结构刚度最小方向,隔震支座的设置降低了渡槽结构的刚度,延长结构的自振周期;在地震作用下,槽体与水体间的流固耦合作用使得槽身内壁两侧的应力较大;隔震支座的设置增大渡槽结构的位移响应以及槽内水体晃动的幅度,但有效降低渡槽各部位的应力响应,提高渡槽结构的抗震性能。
Based on bent-type aqueduct structures,dynamic characteristics and isolation of aqueduct-water coupling systems were studied by using the Arbitrary Lagrangian-Eulerian(ALE) method.Three-dimensional model with fluid-structure interaction was established,and the plate rubber support was installed.Mooney-Rivlin strain energy density model simulated mechanical constitutive relations of rubber material.The natural vibration frequency,displacement,stress of aqueduct structure,and the water sloshing height were calculated in different water depth conditions under earthquake wave action.The results show that the transverse stiffness is less.The application of isolation technology can reduce stiffness of aqueduct structure and extend natural vibration period of aqueduct structure.The fluid-structure interaction increases stress of the internal wall under earthquake wave action.The seismic displacement response of aqueduct structure and the water sloshing height increase by applying the isolation technology,but the application of isolation technology remarkably reduces the seismic stress response and elevates earthquake resistance performance.
引文
[1]徐建国,陈淮,王博,等.大型渡槽结构考虑耦合的动力建模研究[J].南京理工大学学报,2005,29(6):639-644.XU Jian-guo,CHEN Huai,WANG Bo,et al.Dynamic modeling study of aqueduct structure coupling[J].Journal of Nanjing University of Science and Technology,2005,29(6):639-644.
    [2]张艳红,胡晓.大型渡槽隔震研究[J].水利学报,2005,36(11):1307-1311.ZHANG Yan-hong,HU Xiao.Study on seismic isolation technology for large aqueduct[J].Journal of Hydraulic Engineering,2005,36(11):1307-1311.
    [3]李敏霞,陈厚群,王济,等.渡槽结构隔震耗能减振控制的试验研究[J].地震工程与工程振动,2002,22(4):139-143.LI Min-xia,CHEN Hou-qun,WANG Ji,et al.Experiment study on vibration control of aqueduct bridge using isolation and energy dissipation hybrid system[J].Earthquake Engineering and Engineering Vibration,2002,22(4):139-143.
    [4]杨世浩,李正农,宋一乐,等.大型渡槽支座隔震研究[J].振动工程学报,2009,22(2):188-192.YANG Shi-hao,LI Zheng-nong,SONG Yi-le,et al.Seismic isolation of large aqueduct by using seismic isolation bearing[J].Journal of Vibration Engineering,2009,22(2):188-192.
    [5]徐建国,陈淮,王博.渡槽结构非线性隔震研究[J].长江科学院院报,2008,25(2):61-64,68.XU Jian-guo,CHEN Huai,WANG Bo.Nonlinear vibration isolation study of aqueduct structure[J].Journal of Yangtze River Scientific Research Institute,2008,25(2):61-64,68.
    [6]王跃先,陈军,阮雪榆.ALE有限元方法中的网格运动算法[J].上海交通大学学报,2001,35(10):1539-1542.WANG Yue-xian,CHEN Jun,RUAN Xue-yu.Algorithm of mesh-moving in ALE finite element method[J].China Civil Engineering Journal of Shanghai Jiaotong University,2001,35(10):1539-1542.
    [7]李遇春,楼梦麟.排架式渡槽流-固耦合动力特性分析[J].水利学报,2000(12):31-37.LI Yu-chun,LOU Meng-lin.Dynamic characteristics of fluid-structure interaction system for bent-type aqueduct[J].Journal of Hydraulic Engineering,2000(12):31-37.
    [8]张伯艳,刘云贺,陈厚群.U形渡槽结构静动力分析[J].水利学报,2004(1):74-77.ZHANG Bo-yan,LIU Yun-he,CHEN Hou-qun.analysis on static and dynamic characteristics of large-scale U-type aqueduct[J].Journal of Hydraulic Engineering,2004(1):74-77.
    [9]Shin S,Lee W I.Finite element analysis of incompressible viscous-ow with moving free surface by selective volume of-uid method[J].International Journal of Heat and Fluid Flow,2000(21):197-206.
    [10]Filipovic N,Mijailovic S,Tsuda A,et al.An implicit algorithm within the arbitrary Lagrangian-Eulerian formulation for solving incompressible-uid-ow with large boundary motions[J].Comput Methods Appl Mech Engrg,2006(195):6347-6361.
    [11]Souli M,Zolesio J P.Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics[J].Comput Methods Appl Mech Engrg,2001(191):541-466.
    [12]何建涛,刘云贺,孙蓉莉.附加质量模型在渡槽抗震计算中的适用性研究[J].西安理工大学学报,2007,23(1):52-55.HE Jian-tao,LIU Yun-he,SUN Rong-li.Research on additional mass model’s applicability in the seismic calculation of aqueduct[J].Journal of Xi’an University of Technology,2007,23(1):52-55.
    [13]Braess H,Wriggers P.Arbitrary Lagrangian Eulerian finite element analysis of free surface-ow[J].Comput Methods Appl Mech Engrg,2000(190):95-109.
    [14]黄建龙,解广娟,刘正伟.基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J].橡塑技术与装备,2008,34(12):22-26.HUANG Jian-long,XIE Guang-juan,LIU Zheng-wei.Finite element analysis of super-elastic rubber materials based on the Mooney-Rivlin and Yeoh model[J].China Rubber/Plastics Technology and Equipment,2008,34(12):22-26.
    [15]郑明军,谢基龙.压缩状态下橡胶件大变形有限元分析[J].北方交通大学学报,2001,25(1):76-79.ZENG Ming-jun,XIE Ji-long.Finite element analysis of large deformation of compressed rubber component[J].Journal of Northern Jiaotong University,2001,25(1):76-79.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心