无黏结材料对全钢屈曲约束支撑受力性能影响的试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
试验设计了2个几何尺寸相同的全钢屈曲约束支撑(BRB)试件,其中1个试件在核心板和约束部件之间采用无黏结材料,另1个试件未采用无黏结材料。通过低周往复加载试验,分析了无黏结材料对全钢BRB滞回性能、失效模式、受压承载力调整系数和残余变形等的影响。结果表明:采用和未采用无黏结材料的全钢BRB均表现较好的低周疲劳性能,但采用无黏结材料后,全钢BRB在等幅加载中的循环次数增加了21%,低周疲劳性能略有提高;未采用无黏结材料的全钢BRB的受压承载力调整系数远大于采用无黏结材料的全钢BRB;无黏结材料减小了全钢BRB核心板和约束板之间的摩擦力,避免核心板磨损;核心板和约束板间的摩擦力导致核心板屈服段中部收缩、两端膨胀,未采用无黏结材料的全钢BRB残余变形更为显著,且核心板端部膨胀会挤压填充板条。
Two all-steel BRB specimens with identical dimensions were designed in the experiment and only one specimen employed the unbonding material between the core plate and the restraining members.Static cyclic loading tests of the two specimens were performed in order to evaluate the effect of the unbonding material on the all-steel BRB' s performance,including the failure mode,hysteretic behavior,compression strength adjustment factor and residual deformation.It is concluded from test results that two BRB specimens have good low-cycle fatigue performance.Moreover,the number of cycle of the BRB with the unbonding material under the constant loading amplitude increases by 21%,which shows that its low-cycle fatigue performance is better than the BRB without the unbonding material.The compression strength adjustment factor of the BRB without the unbonding material is much greater than one with the unbonding material.The unbonding material can decrease the frictional force between the core plate and the restraining members and can prevent the core plate from wear.The frictional shear force causes the middle region of the yield segment to shrink and the end region to expand.This observation is very clear for the BRB without the unbonding material and its expanded core plate squeezes the fillers.
引文
[1]谢强,赵亮.屈曲约束支撑的研究进展及其应用[J].钢结构,2006,21(1):46-48.(XIE Qiang,ZHAO Liang.Progress in research on buckling-restrained braces and their applications[J].SteelStructures,2006,21(1):46-48.(in Chinese))
    [2]蔡克铨,黄彦智,翁崇兴.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展,2005,7(3):1-8.(TSAI Keh-chyuan,HWANGYean-chih,WENG Chung-shing.Seismic performanceand applications of double-tube buckling-restrainedbraces[J].Progress in Steel Building Structures,2005,7(3):1-8.(in Chinese))
    [3]李国强,孙飞飞,陈素文,等.大吨位国产TJ-II型屈曲约束支撑的研制与试验研究[J].建筑钢结构进展,2009,11(4):22-26.(LI Guo-qiang,SUN Fei-fei,CHEN Su-wen,et al.Development andexperimental study of large-tonnage domestic TJ-IIbuckling-restrained brace[J].Progress in SteelBuilding Structures,2009,11(4):22-26.(inChinese))
    [4]胡大柱,李国强,孙飞飞,等.屈曲约束支撑铰接框架足尺模型模拟地震振动台试验[J].土木工程学报,2010,43(增刊1):520-525.(HU Dazhu,LIGuoqiang,SUN Feifei,et al.Full-scale shaking tabletests on a hinge-connected steel frame with bucklingrestrained braces[J].China Civil Engineering Journal,2010,43(Suppl.1):520-525.(in Chinese))
    [5]高向宇,王永贵,刘丹卉,徐建伟.端部加强型组合热轧角钢防屈曲支撑静载试验研究[J].建筑结构学报,2010,31(3):77-82.(GAO Xiangyu,WANGYonggui,LIU Danhui,XU Jianwei.Static tests onbuckling restrained brace made of hot-rolled steel anglewith strengthened ends[J].Journal of BuildingStructures,2010,31(3):77-82.(in Chinese))
    [6]赵俊贤,吴斌,欧进萍.新型全钢防屈曲支撑的拟静力滞回性能试验[J].土木工程学报,2011,44(4):60-70.(ZHAO Junxian,WU Bin,OU Jinping.Uniaxial quasi-static cyclic tests on the hystereticbehavior of a novel type of all-steel buckling-restrainedbrace[J].China Civil Engineering Journal,2011,44(4):60-70.(in Chinese))
    [7]Watanabe A,Hitomi Y,Saeki E,Wada A,Fujimoto M.Properties of brace encased in buckling-restrainingconcrete and steel tube[C]//9th World Conference onEarthquake Engineering.Tokyo-Kyoto,Japan:ScienceCouncil of Japan,1988:719-724.
    [8]蔡克铨,魏志毓,吴安杰,林保均.脱层材料与槽接式挫屈束制支撑的性能研究[J].建筑钢结构进展,2012,14(5):10-20.(TSAI Keh-chyuan,WEIChih-yu,WU An-chien,LIN Pao-chun.Experimentalinvestigations of unbonding layers and welded end-slotconnection for buckling restrained braces[J].Progressin Steel Building Structures,2012,14(5):10-20.(inChinese))
    [9]Iwata M.Applications-design of buckling restrainedbraces in Japan[C]//13th World Conference onEarthquake Engineering.Paper No.3208.Vancouver,BC,Canada:Canadian Association for EarthquakeEngineering,2004.
    [10]Tsai K-C,Lai J-W,Hwang Y-C,Lin S-L,Weng C-H.Research and application of double-core bucklingrestrained braces in Taiwan[C]//13th WorldConference on Earthquake Engineering.Paper No.2179.Vancouver,BC,Canada:Canadian Associationfor Earthquake Engineering,2004.
    [11]Tremblay R,Bolduc P,Neville R,DeVall R.Seismictesting and performance of buckling-restrained bracingsystems[J].Canadian Journal of Civil Engineering,2006,33(2):183-198.
    [12]Chou C-C,Chen S-Y.Subassemblage tests and finiteelement analyses of sandwiched buckling-restrainedbraces[J].Engineering Structures,2010,32(8):2108-2121.
    [13]Wang C-L,Usami T,Funayama J.Evaluating theinfluence of stoppers on the low-cycle fatigue propertiesof high-performance buckling-restrained braces[J].Engineering Structures,2012,41:167-176.
    [14]AISC.Seismic provisions for structural steel buildings[S].Chicago,IL:American Institute of SteelConstruction,2010.
    [15]Bowden F P,Hunghes T P.The friction of clean metalsand the influence of adsorbed gases:the temperaturecoefficient of friction[J].Proceedings of the RoyalSociety A-Mathematical and Physical Sciences,1939,172(949):263-279.
    [16]Wang C-L,Usami T,Funayama J.Improving low-cyclefatigue performance of high-performance buckling-restrained braces by toe-finished method[J].Journal ofEarthquake Engineering,2012,16(8):1248-1268.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心