基于微震信号突变分析的底板断层突水预测
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了探索承压水上底板采动断层活化破坏特征,预防底板断层活化突水,利用微震监测技术对工作面底板采动断层进行了连续动态监测。结果表明:当工作面推进距断层约60 m时,断层就出现活化迹象,且随着工作面的推进,断层活化程度及破坏范围增大;底板断层活化破坏深度达到30.4 m,接近无断层底板破坏深度的2倍,活化破碎的断层带更容易形成导水通道诱发工作面底板突水。基于承压水上采动断层活化破坏特征信号,利用Origin数据处理软件对微震监测的底板断层活化破坏深度数据进行了4次多项式拟合,应用基于突变理论推导的底板采动岩体失稳突水判据对其进行了突变分析。依据分析预测结果,并结合放水孔水量、水温等信息,及时注浆加固了底板断层活化破坏区域,使工作面顺利推过断层区域,实现承压水上断层区域工作面的安全带压开采。
In order to investigate the activation failure characteristics of mining floor fault above confined aquifer and predict the water-inrush from activated floor fault,a micro-seismic monitoring technique was applied to monitor the mining floor fault.The results show that when workface advances to fault with a distance of approximately 60 m,the floor fault shows activation signs,and the activation failure depth of floor fault increases with workface advancement.The greatest failure depth is 30.4 m which is close to two times of the floor failure depth without faults.This is more likely to form guided water channel and may induce water-inrush from workface floor fault.Based on the activation failure characteristics of floor fault above confined aquifer,the Origin data processing software was used to fit the failure depth data of activated floor fault from micro-seismic monitoring into a four polynomial,therefore,the catastrophe analysis of the fitted four polynomial was carried out based on the instability water-inrush criterion of floor rock derived from catastrophe theory.According to the catastrophe analysis and the water quantity and temperature of the drain hole,the area of activated floor fault was reinforced by borehole grouting in time,which made the workface advanced through the floor fault area successfully,and achieved a safe mining above the confined aquifer.
引文
[1]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [2]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [3]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报,1996,21(2):119-123.Li Liangjie,Qian Minggao,Li Shugang.Mechanism of water-inrush through faults[J].Journal of China Coal Society,1996,21(2):119-123.
    [4]杨天鸿,唐春安,谭志宏,等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.Yang Tianhong,Tang Chun’an,Tan Zhihong,et al.State of the art of inrush models in rock mass failure and developing trend for prediction and forecast of groundwater inrush[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(2),268-277.
    [5]李青锋,王卫军,朱川曲,等.基于隔水关键层原理的断层突水机理分析[J].采矿与安全工程学报,2009,26(1):87-90.Li Qingfeng,Wang Weijun,Zhu Chuanqu,et al.Analysis of fault water-inrush mechanism based on the principle of water-resistant key strata[J].Journal of Mining&Safety Engineering,2009,26(1):87-90.
    [6]刘志军,胡耀青.承压水上采煤断层突水的固流耦合研究[J].煤炭学报,2007,32(10):1046-1050.Liu Zhijun,Hu Yaoqing.Solid-liquid coupling study on water inrush through faults in coal mining above confined aquifer[J].Journal of China Coal Society,2007,32(10):1046-1050.
    [7]许进鹏,张福成,桂辉,等.采动断层活化导水特征分析与实验研究[J].中国矿业大学学报,2012,41(3):415-419.Xu Jinpeng,Zhang Fucheng,Gui Hui,et al.Characteristics and experimental study of water conduction caused by fault activation due to mining[J].Journal of China University of Mining&Technology,2010,41(3):415-419.
    [8]闫宪磊,陈学华,闫宪洋.综放工作面过断层期间微震规律分析[J].煤炭学报,2011,36(S1):83-87.Yan Xianlei,Chen Xuehua,Yan Xianyang.Analysis on microseismic law when fully mechanized coalface passed through fault[J].Journal of China Coal Society,2011,36(S1):83-87.
    [9]郭晓强,窦林名,陆菜平,等.采动诱发断层活化的微震活动规律研究[J].煤矿安全,2011,42(1):26-30.Guo Xiaoqiang,Dou Linming,Lu Caiping,et al.Research on the microseismic activity of fault reaction induced by coal mining[J].Safety in Coal Mines,2011,42(1):26-30.
    [10]姜福兴,叶根喜,王存文,等.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报,2008,27(9):19321938.Jiang Fuxing,Ye Genxi,Wang Cunwen,et al.Application of highprecision microseismic monitoring technique to water inrush monitoring in coal mine[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1932-1938.
    [11]郑超,杨天鸿,于庆磊,等.基于微震监测的矿山开挖扰动岩体稳定性评价[J].煤炭学报,2012,37(S2):280-286.Zheng Chao,Yang Tianhong,Yu Qinglei,et al.Stability evaluation of excavated rockmass in mines based on microseismic monitoring[J].Journal of China Coal Society,2012,37(S2):280-286.
    [12]张鹏海,杨天鸿,郑超,等.基于采动应力场与微震活动性的岩体稳定性评价[J].煤炭学报,2013,38(2):183-188.Zhang Penghai,Yang Tianhong,Zheng Chao,et al.Analysis of surrounding rock stability based on mining stress field and microseismicity[J].Journal of China Coal Society,2013,8(2):183-188.
    [13]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [14]王连国,宋扬.底板突水的非线性特征及预测[M].北京:煤炭工业出版社,2001.
    [15]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987.
    [16]王志强,韩金生,潘岳.水库诱发地震的折迭突变模型[J].中国矿业大学学报,2010,39(3):368-372.Wang Zhiqiang,Han Jinsheng,Pan Yue.Fold catastrophe model of reservoir induced seismicty[J].Journal of China University of Mining&Technology,2010,39(3):368-372.
    [17]姜福兴,Xun Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.Jiang Fuxing,Xun Luo,Yang Shuhua.Microseismic monitoring study on spatial structure of overlying strata and mining pressure field in longwall face[J].Chinese Journal of Geotechnical Engineering,2003,25(1):23-25.
    [18]Sun Jian,Wang Lianguo,Wang Zhansheng,et al.Determining areas in an inclined coal seam floor prone to water-inrush by micro-seismic monitoring[J].Mining Science and Technology,2011,21(2):165168.
    [19]孙建,王连国,唐芙蓉,等.倾斜煤层底板破坏特征的微震监测[J].岩土力学,2011,32(5):1589-1595.Sun Jian,Wang Lianguo,Tang Furong,et al.Microseismic monitoring on the failure characteristics of an inclined coal seam floor[J].Rock and Solid Mechanics,2011,32(5):1589-1595.
    [20]窦林名,何江,巩思园,等.采空区突水动力灾害的微震监测案例研究[J].中国矿业大学学报,2012,41(1):20-25.Dou Linming,He Jiang,Gong Siyuan,et al.A case study of microseismic monitoring:goaf water-inrush dynamic hazards[J].Journal of China University of Mining&Technology,2012,41(1):20-25.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心