超高层建筑风效应的流固耦合CFD模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以300 m级利通广场为研究对象,基于ANSYS平台,建立建筑的壳单元气弹模型,输入合理流场信息,对结构风振响应和流场特性进行分析。研究表明,气流在结构前缘发生分离,屋顶斜坡处气流发生再附,结构后方形成湍流度较强的尾流区,结构迎风面上正风压随高度而增大,结构背风面和侧面因处于尾流区而呈现负压;结构不同高度处出现涡源,随平均风输送而远离结构表面;结构顶部的顺风向和横风向响应与风洞试验结果接近。
With 300 m high Litong Plaza as the study object and based on the platform of ANSYS,shell unit aeroelastic model of the building is established,suitable flow field information is input to analyze the wind-induced structural response and flow field characteristics.Studies show that flow separates at the front edge of the building,and reattaches on the slope of rooftop,forming strong turbulence wake zone at the back of the building.Positive wind pressure on the windward surface increases with structural height,while negative pressure exists at leeward surface and side surface owing to their position in wake zone.Vortex source appears at different height of the building,which is transported away from structural surface with mean wind velocity.Along-wind and cross-wind responses on the top of the building are close to results of wind tunnel tests.
引文
[1]Qu Y,Gu M.Across-wind equivalent static wind loads and re-sponses of super-high-rise buildings[J].Advances in Struc-tural Engineering,2012,15(12):2145-2155.
    [2]Wang B,Yang Q.Research on coupling arithmeric of wind-in-duced response of membrane structure[C].Proceedings of the9th international conference on steel,space&composite structures,Singapore:CI-PREMIER PTE LTD,2007:103-108.
    [3]Wu Z,Dai Y,Yang C,et al.Aeroelastic Wind-tunnel test for aerodynamic uncertainty model validation[J].Journal of Air-craft,2013,50(1):47-55.
    [4]Rugonyi S,Bathe K.On finite element analysis of fluid flows by fully coupled with structural interactions[J].Computer Modeling in Engineering&Sciences,2001,2(2):195-212.
    [5]Matthies H,Steindorf J.Partitioned strong coupling algorithms for fluid-structure interaction[J].Computers&Structures,2003,81(8-11):805-812.
    [6]Gluck.M,Breuer M,Durst F,et al.Computation of fluid-structure interaction on lightweight structures[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,89(14-15):1351-1368.
    [7]Thepmongkorn S,Kwok K.Wind-induced responses of tall buildings experiencing complex motion[J].Journal of WindEngineering and Industrial Aerodynamics.2002,90(4-5):515-526.
    [8]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(1):1-9.
    [9]孙芳锦,张大明,殷志祥.膜结构风振中流固耦合效应的数值模拟研究[J].地震工程与工程振动.2010,30(3):137-140.
    [10]Bekele S,Hangan H.A comparative investigation of the TTUpressure envelope-Numerical versus laboratory and full scale results[J].Wind and Structures,2002,5(2-4):337-346.
    [11]Simiu E,Scanlan R.Wind effects on structures:Fundamen-tals and Applications to Design[M].John Wiley&Sons,Inc.,1996.
    [12]郑庆星.高层建筑风致振动的风洞试验与原型实测研究[D].广州:广州大学学位论文,2011.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心