海上风电工程结构与地基的关键力学问题
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
作为一种新型清洁能源,海上风力发电受到人们的广泛关注,近十年发展迅猛.海上风电结构既不同于陆上风电结构,也区别于传统的海洋平台,既要考虑风对风机、塔架的作用,也要考虑波、浪、流、冰对水下支撑结构和地基的作用,还要考虑高倾覆力矩作用下地基的变形和承载力.然而,与之相关的水动力学、土力学、结构动力学及流-固-土耦合力学等的现有理论,还远不能满足工程设计和建设的需求,亟待发展.本文在阐述海上风电工程发展现状、结构形式与特征的基础上,重点阐述有关海上风电结构(包括固定式和浮式)的耦合水动力载荷与响应、地基的动力响应与承载特性的研究发展趋势,从水动力学、土力学和结构动力学的角度,凝练其中亟待开展深入研究的关键科学问题,包括:近海复杂海洋环境条件、海上风机系统的耦合水动力载荷、支撑结构和地基的动力响应等,并据此提出近期研究的发展方向,为从事海上风电工程研究和建设的科技人员提供参考.
Offshore wind energy,as an environmentally friendly and clean energy source,has been drawing more and more attention and seeing its marvelous development in the last decade.The development of technology for offshore wind energy exploitation has so far principally relied on the very extensive base of foundational knowledge used for onshore wind energy,other offshore applications and power management.Nevertheless,this knowledge base is far less complete for offshore wind power engineering design,because complicated environmental loads from extreme winds,waves,currents,ice,etc.and their coupling with structure responses make offshore wind pow er system very much different in structure from onshore wind turbines and traditional marine oil/gas platforms.It is essentially urgent to deepen understanding of the hydrodynamics and fluid-structure-foundation interactions involved in offshore wind power engineering.The present paper aims to delineate the state of the art of offshore wind power engineering,characteristics of offshore wind turbine system,and,most importantly,to deduce new research trends of some significant topics in areas of hydrodynamics,soil mechanics and structural dynamics,such as extreme ocean environments,coupling hydrodynamic loads,structure responses,and fluid-structure-foundation interactions.It will serve as a good reference to researchers and engineers engaged in offshore wind power engineering.
引文
1 Zhang F.Current situation of energy problem and strategic measures(in Chinese).Public Commun Sci Technol,2013,2:49–50[张芳.当前能源形势及解决能源问题的对策.科技传播,2013,2:49–50]
    2 Hameed Z,Vatn J,Heggset J.Challenges in the reliability and maintainability data collection for offshore wind turbines.Ren Energy,2011,36 (8):2154–2165
    3 Gipe P.Wind energy comes of age California and Denmark.Energy Policy,1991,19:756–767
    4 Kaldellis J K,Zafirakis D.The wind energy(r)evolution:A short review of a long history.Ren Energy,2011,36(7):1887–1901
    5 Zaaijer M B.Review of knowledge development for the design of offshore wind energy technology.Wind Energy,2009,12(5):411–430
    6 Zhang D,Zhang X L,He J K,et al.Offshore wind energy development in China:Current status and future perspective.Ren Sustain Energy Rev,2011,15(9):4673–4684
    7 Han J Y,Arthur P J Mol,Lu Y L,et al.Onshore wind power development in China:Challenges behind a successful story.Energy Policy,2009,37:2941–2951
    8 李俊峰等编著.风光无限中国风电发展报告2011.北京:中国环境科学出版社,2011
    9 Guo Y,Wang Z K.A comparison between European and Chinese Offshore Wind Power Industries(in Chinese).Sino-Global Energy,2011,16 (3):26–30[郭越,王占坤.中欧海上风电产业发展比较.中外能源,2011,16(3):26–30]
    10 Wikipedia.http://en.wikipedia.org/wiki/List_of_offshore_wind_farms#Other_highly_notable_offshore_wind_farms.
    11 Luo R Y,Lin Y,Qian Y.The development and prospects of world wind power industry(in Chinese).Ren Energy Resour,2010,28(2):14 –17[罗如意,林晔,钱野.世界风电产业发展综述.可再生能源,2010,28(2):14–17]
    12 Jonkman J M,Matha D.Dynamics of offshore floating wind turbines-annlysis of three concepts.Wind Energy,2011,14:557–569
    13 Robertson A N,Jonkman J M.Loads analysis of several offshore floating wind turbine concepts.In:the Proceedings of the Twenty-first International Offshore and Polar Engineering Conference.Hawaii:ISOPE,2011.443–450
    14 Fr yd L,Dahlhaug O G.Rotor design for a 10 MW offshore wind turbine.In:the Proceedings of the Twenty-first International Offshore and Polar Engineering Conference.Hawaii:ISOPE,2011.327–334
    15 Ryu M S,Kang K S,Lee J S.A suggestion for the foundation type of offshore wind turbine in the test bed on the basis of eco nomic and constructability analysis.In:the Proceedings of the 22nd International Offshore and Polar Engineering Conference.Rhodes:ISOPE,2012.202 –206
    16 Wang C M,Utsunomiya T,Wee S C,et al.Research on floating wind turbines:A literature survey.IES J Part A:Civil&Struct Eng,2010,3(4):267–277
    17 Manabe H,Uehiro T,Utiyama M,et al.Development of the floating structure for the sailing-type offshore wind farm.In:the Proceedings of OCEANS008 MTS/IEEE Kobe Techno Ocean008.Kobe:IEEE,2008.1–4
    18 Matha D,Schlipf M,Cordle A,et al.Challenges in simulation of aerodynamics,hydrodynamics,and mooring-line dynamics of floating offshore wind turbines.In:the Proceedings of the Twenty-first International Offshore and Polar Engineering Conference.Hawaii:NREL,2011.421–428
    19 Henderson A R,Zaaijer M B.Hydrodynamic loading on offshore wind turbines.In:the Proceedings of the Fourteenth International Offshore and Polar Engineering Conference,2004
    20 Chen G H.Interdecadal variation of tropical cyclone activity in association with summer monsoon,sea surface temperature over the western North Pacific.Chin Sci Bull,2009,54(8):1417–1421
    21 Wang L Z,Li J C.Non-stationary variation of tropical cyclones activities in the Northwest Pacific.China Ocean Eng,2010,24(4):725–733
    22 Li J C.Research progress of extreme environmental events in Offshore Engineering(in Chinese).In:the Proceedings of the Thirteenth Symposium on Offshore Engineering.Nanjing:Chinese Ocean Engineering Society,2007.1–6[李家春.海洋工程中极端环境事件的研究进展(大会主题报告).第十三届中国海洋(岸)工程学术讨论会论文集.南京:中国海洋工程学会编,2007.1–6]
    23 Farmakis G E,Angelides D C.Fixed bottom tripod type offshore wind turbines under extreme and operating conditions.In:the Proceedings of the Twenty-first International Offshore and Polar Engineering Conference.Hawaii:NREL,2011.291–298
    24 Deacon E L,Webb E K.Aerodynamic roughness of the sea.J Geophys Res,1962,67(8):3167–3172
    25 Geernaert G L,Laresn S E,Hansen F.Measurements of the wind stress,heat flux,and turbulence intensity during storm condit ions over the North Sea.J Geophys Res,1987,92:13127–13139
    26 Li J C,Zhang Z F.Two-parameter-dependent drag coefficient over sea surface by turbulent modeling.Commun Nonlinear Sci Numer Simul,1999,4(1):8–11
    27 Komen G J,Cavaleri L,Donelan M,et al.Dynamics and Modeling of Ocean Waves.New York:Cambridge University Press,1994
    28 Philips O M.Spectral and statistical properties of the equilibrium range in wind-generated gravity waves.J Fluid Mech,1985,156(1):505 –531
    29 Ardhuin F,Collard F,Chapron B,et al.Spectral wave dissipation based on observations:A global validation.In:the Proceedings of Chinese-German Joint Symposium on Hydraulics and Ocean Engineering.Darmstadt,2008.391–400
    30 Young I R,Babanin A V.Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking.J Phys Oceanography,2006,36(3):376–394
    31 王黎珍.海洋极端环境及平台安全性研究.博士学位论文.北京:中国科学院力学研究所,2011
    32 Muskulus M.Designing the next generation of computational codes for wind-turbine simulations.In:the Proceedings of the Twenty-first International Offshore and Polar Engineering Conference.Hawaii:ISOPE,2011.314–318
    33 Li J C.Some problems on water wave dynamics research(in Chinese).In:Advances in modern fluid mechanics.Beijing:Science Press,1991[李家春.水波动力学研究的若干问题.见:现代流体力学进展.北京:科学出版社,1991]
    34 Sarpkaya T.Isaacson M.Mechanics of wave forces on offshore structures.Litton Educational Publishing Inc,1981
    35 Liang Q H,Zang J,Borthwick A G L,et al.Numerical simulation of non-linear wave interaction with an offshore wind turbine foundation.In:the Proceedings of the Seventh ISOPE Pacific/Asia Offshore Mechanics Symposium.Dalian:ISOPE,2006.231–236
    36 Li J C,Wang T.Fluid-structure interaction problems in ocean engineering(in Chinese).J Nonlinear Dyn Sci Technol,1999,6(4):286–292[李家春,王涛.海洋工程中的流固耦合问题.非线性动力学学报,1999,6(4):286–292]
    37 Lu P,Li Z J.A comparison of ice load on a picket calculated from current criterions(in Chinese).J Glaciology Geocryology,2003,25 (suppl 2):356–359[卢鹏,李志军.现行规范中计算桩柱冰荷载的比较.冰川冻土,2003,25(增刊2):356–359]
    38 Design of offshore wind turbine structure.Offshore Standard DNV-OS-J101,Det Norske Veritas.2010
    39 Maruo H.The drift of a body floating on waves.J Ship Res,1960,4:1–10
    40 Longuet-Higgins M S.The mean forces exerted by waves on floating or submerged bodies with applications to sand bars and wave power machines.Proc Royal Soci London A-Math Phys Sci,1977,352:463–480
    41 Marino E,Lugni C,Borri C.A novel numerical strategy for the simulation of irregular nonlinear waves and their effec ts on the dynamic response of offshore wind turbines.Comput Meth Appl Mech Eng,2013,255:275–288
    42 Waisman F,Gurley K,Grigoriu M,et al.Non-Gaussian model for ringing phenomena in offshore structures.J Eng Mech,2002,128(7):730 –741
    43 Gurley K R,Kareem A.Simulation of ringing in offshore systems under viscous loads.J Eng Mech,1998,124(5):582–586
    44 Chaplin J R,Rainey R C T,Yemm R W.Ringing of a vertical cylinder in waves.J Fluid Mech,1997,350:119–147
    45 Adrezin R,Bar-Avi P,Benaroya H.Dynamic response of compliant offshore structures—Review.J Aero Eng,1996,9(6):114–131
    46 Faltinsen O M,Newman J N,Vinje T.Nonlinear wave loads on a slender vertical cylinder.J Fluid Mech,1995,289:179–198
    47 Natvig B J,Teigen P.Review of hydrodynamic challenges in TLP design.Int J Offshore Polar Eng,1993,3(4):241–249
    48 Rainey R C T.Weak or strong nonlinearity:The vital issue.J Eng Math,2007,58(1-4):229–249
    49 Sanaati B,Kato N.Vortex-induced vibration(VIV)dynamics of a tensioned flexible cylinder subjected to uniform cross-flow.J Marine Sci Technol,2013,18(2):247–261
    50 Hartlen R T,Currie I G.Lift-oscillator model of vortex-induced vibration.J Eng Mech Division,1970,96(5):577–591
    51 Iwan W D,Blevins R D.A model for the vortex-induced oscillation of structures.J Appl Mech,1974,41:581–586
    52 Wootton L R,Warner M H,Cooper D H.Some Aspects of the Oscillations of Full-Scale Piles.Berlin:Springer-Verlag,1974.587–601
    53 Srinil N,Zanganeh H.Modelling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators.Ocean Eng,2012,53:83–97
    54 Wu X D,Ge F,Hong Y S.A review of recent studies on vortex-induced vibrations of long slender cylinders.J Fluids Struct,2012,28:292 –308
    55 Chen W M,Zheng Z Q,Li M.Multi-mode vortex-induced vibration of slender cable experiencing shear flow.Procedia Eng,2010,4:145 –152
    56 Takizawa K,Henicke B,Montes D,et al.Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics.Comput Mech,2011,48(6):647–657
    57 Lavassas I,Nikolaidis G,Zervas P,et al.Analysis and design of the prototype of a steel 1 MW wind turbine tower.Eng Struc t,2003,25(8):1097–1106
    58 Wang T,Coton F N.Prediction of the unsteady aerodynamic characteristics of horizontal axis wind turbines including three dimensional effects.J Power Energy,2000,214(5):385–400
    59 Tang D,Lu Z L,Wang T G,et al.Wind turbine aerodynamic load and response prediction based on vortex wake method(in Chines e).Acta Aerodyn Sin,2011,27(3):140–148[唐迪,陆志良,王同光,等.基于涡尾迹方法的风机载荷与响应计算.空气动力学学报,2011,27 (3):140–148]
    60 Chen X B,Li J,Chen J Y.Analysis of dynamic characteristics of rotating wind turbine blade with centrifugal stiffening effe ct(in Chinese).J Earthquake Eng&Eng Vib,2009,29(1):117–122[陈小波,李静,陈健云.考虑离心刚化效应的旋转风力机叶片动力特性分析.地震工程与工程振动,2009,29(1):117–122]
    61 Maneti S,Petrini F.Dynamic analysis of an offshore wind turbine:Wind-wave nonlinear interaction.2010,doi:http://dx.doi.org/10.1061/41096(366)184
    62 Bazeos N,Hatzigeorgiou G D,Hondros I D,et al.Static seismic and stability analyses of a prototype wind turbine steel tower.Eng S truct,2002,24:1015–1025
    63 Ding M H,Li X.Comparative study of different calculation models of offshore wind turbine structure(in Chinese).Water Resour Power,2011,29(10):49–52[丁明华,李昕.海上风机结构不同计算模型的比较研究.水电能源科学,2011,29(10):49–52]
    64 Rubak R,Petersen J T.Monopile as part of aeroelastic wind turbine simulation code.In:the Proceedings of Copenhagen Offsho re Wind,Conference&Exhibition.2005
    65 Murtagh P J,Basu B,Broderick B M.Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading.Eng Struct,2005,27(8):1209–1219
    66 Lin Y F,Li J Y,Shen D,et al.Structure characteristics and design technique keys of wind turbine foundation in Shanghai Donghai-Bridge offshore wind farm(in Chinese).Shanghai Electric Power,2007,2:153–157[林毅峰,李健英,沈达,等.东海大桥海上风场风机地基基础特性及设计.上海电力,2007,2:153–157]
    67 Whitehouse R.Scour at Marine Structures:A Manual for Practical Application.London:Thomas Telford Press,1998
    68 Robert B,Thomsen J H,Forsberg T.Offshore wind turbine foundations-the COWI experience.In:the Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering,OMAE2007–29567.San Diego:American Society of Mechanical Engineers,2007
    69 Sumer B M,Whitehouse R J S,Torum A.Scour around coastal structures:A summary of recent research.Coastal Eng,2001,44(2):153 –190
    70 Li X J,Gao F P,Yang B,et al.Wave-induced pore pressure responses and soil liquefaction around pile foundation.Int J Offshore Polar Eng,2011,21(3):233–239
    71 Qi W G,Gao F P,Han X T,et al.Local scour and pore-water pressure around a monopile foundation under combined waves and currents.In:the Proceedings of the 22nd International Offshore and Polar Engineering Conference.Rhodes:ISOPE,2012.159–165

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心