煤岩体拉伸失稳破坏电荷感应规律研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究不同类型煤岩试样拉伸破坏过程自由电荷运移规律,以巴西圆盘劈裂试验为基础建立煤岩拉伸失稳破坏全程电荷监测系统。试验中分别对砂岩、泥岩及煤体拉伸失稳动态破坏过程进行实时电荷监测,得到煤岩体拉伸破坏过程中的力学特征和自由电荷运移规律。研究结果表明:煤岩体拉伸过程中有自由电荷产生,电荷信号异常区域对应于煤岩劈裂试验中应力突变阶段,煤体拉伸破坏所产生的自由电荷相对于砂岩、泥岩更为丰富,煤体断裂后的残余强度依旧使得电荷信号有较大波动,而砂岩、泥岩试样断裂后的残余强度却使得电荷信号波动较小。煤岩体拉伸与压缩破坏电荷感应规律不同,拉伸失稳破坏过程中拉应力造成裂纹扩展进而导致损伤局部化是电荷信号异常的重要原因之一。
In order to study the free charge migration law of different types of coal and rock samples during the process of tensile failure,the charge monitoring system for coal and rock tensile instability and failure is developed under the frame of the Brazil disk splitting test.The mechanical characteristics and free charge migration law are obtained through the real-time monitoring process of sandstone,mudstone and coal samples during tensile instability and failure.The results show that there exist free charges during the tensile process of coal and rock mass.Charge signal abnormal area is corresponding to the stress mutation process in the samples splitting test;and the free charges produced by coal is richer than that produced by sandstone and mudstone during tensile failure.Compared with sandstone and mudstone,the residual strength of coal after fracture still makes the charge signal have larger fluctuation.Charge induction law is different between tensile and compression failure of coal and rock.One of the important reasons for the abnormal charge signal is the damage localization caused by crack propagation under the tensile stress during the tensile instability and failure of coal and rock mass.
引文
[1]KILKEEV R S.力荷载下的岩石电场[C]//徐玉凤译.苏联地震预报研究文集.北京:地震出版社,1993:31–34.(KILKEEV R S.Electric field strength of rock under the load[C]//Translated by XUYufeng.Proceedings of Soviet Union Earthquake Prediction Research.Beijing:Seismological Press,1993:31–34.(in Chinese))
    [2]徐为民,童芜生,吴培稚.岩石破裂过程中电磁辐射的实验研究[J].地球物理学报,1985,28(2):181–190.(XUWeimin,TONGWusheng,WU Peizhi.Experimental study of electromagnetic emission duringrock fracture[J].Chinese Journal of Geophysics,1985,28(2):181–190.(in Chinese))
    [3]郭自强,尤峻汉,李高,等.破裂岩石的电子发射与压缩原子模型[J].地球物理学报,1989,32(2):173–177.(GUO Ziqiang,YOUJunhan,LI Gao,et al.The model of compressed atoms and electronemission of rock fracture[J].Chinese Journal of Geophysics,1989,32(2):173–177.(in Chinese))
    [4]郭自强,周大庄,施行觉,等.岩石破裂中的电子发射[J].地球物理学报,1988,31(5):566–571.(GUO Ziqiang,ZHOU Dazhuang,SHI Xingjue,et al.Electron emission during rock fracture[J].ChineseJournal of Geophysics,1988,31(5):566–571.(in Chinese))
    [5]VAROTSOS P,HADJICONTIS V,NOWICK A S.The physicalmechanism of seismic electric signals[J].Acta Geophysica Polonica,2001,49(4):415–421.
    [6]吴小平,施行觉,郭自强.花岗岩压缩带电的实验研究[J].地球物理学报,1990,33(2):208–211.(WU Xiaoping,SHI Xingjue,GUOZiqiang.Study of the electrification of granite samples undercompression[J].Chinese Journal of Geophysics,1990,33(2):208–211.(in Chinese))
    [7]孙正江,王丽华,高宏.岩石标本破裂时的电磁辐射和光发射[J].地球物理学报,1986,29(5):491–495.(SUN Zhengjiang,WANGLihua,GAO Hong.Electromagnetic emission and light radiationduring fracture of rock samples[J].Chinese Journal of Geophysics,1986,29(5):491–495.(in Chinese))
    [8]赵扬锋,潘一山,刘玉春,等.单轴压缩条件下煤样电荷感应试验研究[J].岩石力学与工程学报,2011,30(2):306–312.(ZHAOYangfeng,PAN Yishan,LIU Yuchun,et al.Experimental study ofcharge induction of coal samples under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(2):306–312.(in Chinese))
    [9]潘一山,罗浩,肖晓春,等.三轴条件下含瓦斯煤力电感应规律的试验研究[J].煤炭学报,2012,37(6):918–922.(PAN Yishan,LUO Hao,XIAO Xiaochun,et al.Experimental study on mechanical-charge induction law of coal containing gas under triaxial compression[J].Journal of China Coal Society,2012,37(6):918–922.(in Chinese))
    [10]中华人民共和国行业标准编写组.MT47—87煤和岩石单向抗拉强度测定方法[S].北京:煤炭工业出版社,1987.(The ProfessionalStandards Compilation Group of People s Republic of China.MT 47—87Methods for determining the one-way tensile strength mechanicalproperties of coal and rock[S].Beijing:Coal Industry PublishingHouse,1987.(in Chinese))
    [11]何满潮,胡江春,熊伟,等.岩石抗拉强度特性的劈裂试验分析[J].矿业研究与开发,2005,25(2):12–16.(HEManchao,HUJiangchun,XIONG Wei,et al.Splitting test and analysis of rock tensile strength[J].Mining Research and Development,2005,25(2):12–16.(in Chinese))
    [12]NITSON U.Electromagnetic emission accompanying fracture of quartz-bearing rocks[J].Geophysical Research Letter,1977,(4):333–336.
    [13]王秀琨,王寅生.岩石压电性[J].物探与化探,1985,9(4):274–280.(WANG Xiukun,WANG Yinsheng.Piezoelectricity of rocks[J].Geophysical and Geochemical Exploration,1985,9(4):274–280.(inChinese))
    [14]IVANOV V V,EGOROV P V,KOLPAKOVA LA,et al.Crack dynamicsand electromagnetic emission by loaded rock masses[J].Journal of MiningScience,1988,24(5):406–412.
    [15]OGAWA T,OIKE K,MIURA T.Electromagnetic radiation fromrocks[J].Journal of Geophysical Research,1985,90(D4):6 245–6 249.
    [16]郝锦绮,刘力强,龙海丽,等.双轴压力下岩样自电位变化实验的新结果[J].地球物理学报,2004,47(3):475–482.(HAO Jinqi,LIU Liqiang,LONG Haili,et al.New result of the experiment onself-potential change of rocks under biaxial compression[J].ChineseJournal of Geophysics,2004,47(3):475–482.(in Chinese))
    [17]罗浩,潘一山,赵扬锋,等.基于电荷监测技术预测矿山动力灾害试验研究[J].中国安全科学学报,2012,22(8):98–103.(LUOHao,PAN Yishan,ZHAO Yangfeng,et al.Experimental research onmine dynamic disaster prediction based on charge monitoring technique[J].China Safety Science Journal,2012,22(8):98–103.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心