液化侧向流动场地桩基动力反应振动台试验三维有限元数值模拟方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
将饱和砂土模拟为两相介质,采用水-土动力耦合理论建立的u-p有限元公式,表示水的孔压、土颗粒的变形,以及二者之间动力耦合关系。砂土采用新近基于多屈服面塑性理论发展的土的动力弹塑性本构模型模拟,砂土划分为20-8节点的水土耦合实体单元。针对土箱整体微倾2°的大型振动台试验,建立液化侧向流动场地桩-土动力相互作用分析的三维非线性有效应力有限元数值模型。对比得到,有限元数值分析结果能够与振动台试验结果吻合较好,数值结果可以较好地显示试验中桩和土的重要动力特性。通过校正的数值模型,可进一步考察液化侧向流动场地桩-土动力相互作用的影响因素。
A solid-fluid fully coupled formulation u-p is employed to model soil displacement and pore pressure in the sand as the two phase medium and characterize the interaction between fluid and soil skeleton. A recently developed soil constitutive model based on a multi-surface plasticity framework is chosen to simulate the sand. The solid-fluid fully coupled( u-p) 20-8 node brick elements are used to discrete the sand domains. A three-dimensional nonlinear dynamic finite element analysis was conducted to simulate a shake-table experiment with 2 degree inclination on dynamic pile behaviour subjected to liquefaction-induced lateral spreading. The finite element analysis has produced a model response reasonably matched the shake-table experiment after careful calibration.
引文
[1]刘惠珊.桩基抗震设计探讨——日本阪神大地震的启示[J].工程抗震,2000(3):27-32(Liu Huishan.A discussion on seismic design of pile foundation[J].Earthquake Resistant Engineering,2000(3):27-32(in Chinese))
    [2]凌贤长,唐亮,苏雷,等.中日规范中关于液化和侧向扩流场地桥梁桩基抗震设计考虑之比较[J].防灾减灾学报,2011,31(5):490-495(Ling Xianzhang,Tang Liang,Su lei,et al.Current Chinese and Japanese seismic design code for bridge pile foundations in liquefying ground and lateral spreading ground[J].Journal of Disaster Prevention and Mitigation Engineering,2011,31(5):490-495(in Chinese))
    [3]李雨润,袁晓铭.液化场地上土体侧向变形对桩基影响研究评述[J].世界地震工程,2004,20(2):17-22(Li Yurun,Yuan Xiaoming.State-of-art of study on influences of liquefaction-induced soil spreading over pile foundation response[J].World Earthquake Engineering,2004,20(2):17-22(in Chinese))
    [4]Tokinatsu K,Suzuki H,Sato M.Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation[J].Soil Dynamic and Earthquake Engineering,2005,25:753-762
    [5]Lu Jinchi,Elgamal A,Yan Linjun,et al.Large scale numerical modeling in geotechnical earthquake engineering[J].International Journal of Geomechanics,2011,11(6):490-503
    [6]唐亮.液化场地桩-土动力相互作用p-y曲线模型研究[D].哈尔滨:哈尔滨工业大学,2010(Tang Liang.P-y model of dynamic pile-soil interaction in liquefying ground[D].Harbin:Harbin Institute of Technology,2010(in Chinese))
    [7]Yang Zhaohui.Numerical modeling of earthquake site response including dilation and liquefaction[D].New York:Columbia University,2000
    [8]Elgamal A,Yang Z,Parra,E.Computational modeling of cyclic mobility and post-liquefaction site response[J].Soil Dynamics and Earthquake Engineering,2002,22(4):259-271
    [9]Parra E.Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilation response in soil systems[D].Troy,NY:Rensselaer Polytechnic Institute,1996
    [10]Chan A H C.A unified finite element solution to static and dynamic problems of geomechanics[D].Swansea,UK:University of Wales,1988

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心