基于失效模式的SRC框架-RC核心筒混合结构三水准抗震优化设计
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以SRC框架-RC核心筒混合结构多目标优化设计为研究背景,通过引入损伤函数,将结构的工程造价和损伤量最小定为优化目标,并根据建筑结构"三水准"抗震设防的目标要求,以及结构在不同受力阶段各类构件的受力特点,提出三水准优化设计的方法:小震作用下,认为混凝土处于开裂的临近状态,假定钢材未发挥作用,仅有混凝土发挥作用,据此对结构构件的截面尺寸与混凝土用量进行优化;在中震作用下,框架与剪力墙处于协同工作状态,据此对整个结构满足层间位移差最小之目标的钢材用量进行优化;在大震作用下,结构处于塑性状态,剪力墙基本退出工作,据此对满足结构损伤值最小之目标的钢材用量进行进一步的优化。从而将一个多目标优化问题转化为多个单目标优化问题求解。综合考虑各种约束条件,运用遗传算法与准则优化法的结合(亦即OC-GA混合算法),实施SRC框架-RC核心筒混合结构基于失效模式的三水准优化求解。通过引入一个24层SRC框架-RC核心筒混合结构的设计实例,对结构优化后的有限元模拟结果进行分析,证实了该优化设计思路是有效、可行的。
Multi-objective design of a SRC frame-RC core wall hybrid structure was taken as an example,minimizing its project cost and damage was taken as optimization objectives by introducing a damage function. According to the three-level aseismic fortification criterion,and the mechanical characteristics of the structure,a three-level aseismic fortification criterion optimization design method was presented. The optimization of the cross-section sizes of the structural components and concrete volume was actualized by assuming that only concrete works under a minor earthquake. The optimization of steel volume was performed to meet the requirement of the minimum displacement difference between two adjacent storeies under a moderate earthquake,while the frame and shear wall were in a collaborative working state. The optimization of steel volume was implemented further to meet the requirement of the minimum structural damage under a severe earthquake,while the structure was in a plastic state and the shear wall was out of work. So,a multi-objective optimization problem was converted into several single-objective optimization problems. Taking various constraints into consideration,a failure modes-based three-level aseismic optimal design of a SRC frame-RC core wall hybrid structure was actualized by using the combination of the genetic algorithm and the optimization criterion,i. e.,the OC-GA algorithm. A numerical example of a 24-storey SRC frame-RC core wall structure was analyzed to verify the rationality of the proposed method.
引文
[1]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计[J].哈尔滨建筑大学学报,1999,32(5):1-5.WANG Guang-yuan,LDa-gang.Optimum design of aseismic structures based on optimal fortification intensity and damage performance[J].Journal of Harbin University of Civil Engineering and Architecture,1999,32(5):1-5.
    [2]李刚,程耿东.灾害荷载下结构体系失效模式的相关性及可靠度计算[J].工程力学,2001,18(3):1-9.LI Gang,CHENG Geng-dong.Correlation between structural failure modes and calculation of system reliability under hazard loads[J].Engineering Mechanic,2001,18(3):1-9.
    [3]Zou X K,Chan C M,Li G,et al.Multiobjective optimization for performance-based design of reinforced concrete frames[J].Journal of Structural Engineering,ASCE,2007,133(10):1462-1474.
    [4]包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2005.
    [5]李忠献,吕杨,徐龙河,等.高层钢框架结构地震失效模式优化及损伤控制研究进展[J].建筑结构学报,2011,32(12):62-70.LI Zhong-xian,L Yang,XU Long-he,et al.Advances in failure mode optimization and damage control for highrise steel frames during earthquakes[J].Journal of Building Structures,2011,32(12):62-70.
    [6]GB 50010-2002,混凝土结构设计规范[S].北京:建筑工业出版社,2002.
    [7]JGJ 138-2001.型钢混凝土组合结构技术规程[S].北京:建筑工业出版社,2002.
    [8]高层建筑混凝土结构技术规程(JGJ3-2002)[S].北京:建筑工业出版社,2002.
    [9]GB 50011-2010.建筑抗震设计规范[S].北京:建筑工业出版社,2011.
    [10]Huang M F.Performance-based serviceability design optimization of wind sensitive tall building[D].Hong Kong:The Hong Kong University of Science and Technology,2008.
    [11]陶清林.地震激励下混合结构损伤演化规律的研究[D].西安:西安建筑科技大学,2011.
    [12]Xu L,Gong Y L,Grierson D E.Seismic design optimization of steel building frameworks[J].Journal of Structural Engineering,2006,132(2):277-286.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心