表面形貌对岩石摩擦滑动本构参数影响研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对典型岩石摩擦滑动试验装置进行改进,以千枚岩、石英岩、石英砂岩、岩屑砂岩、大理岩、石灰岩、鲕状石灰岩和白云质灰岩等岩样作为研究对象,以其抛光面作为摩擦滑动面,从本构参数的角度出发,研究自然、饱水和干燥状态下岩石摩擦滑动过程中的稳定性。采用R-D本构模型分析不同状态下岩石的摩擦滑动本构参数,基于岩石抛光表面形貌分析微凸体和分形维数对岩石摩擦滑动本构参数的影响。试验结果表明:在相同抛光条件下,不同岩石滑动表面微凸体的直径均值、高度均值和表面轮廓平均高度不同,随着这3个参数的增加,本构参数均呈线性规律降低;滑动表面形貌越精细分形维数越大,随着分形维数的增加,本构参数呈线性规律增加。
The typical test apparatus of rock friction sliding was designed and improved.The samples including phyllite,quartzite,quartz sandstone,lithic sandstone,marble,limestone,lite limestone and dolomitic limestone were studied experimentally using the apparatus.The polished surfaces of the samples were taken as the frictional sliding surfaces.The force-displacement curves of frictional sliding for the samples were investigated experimentally under the natural state,saturated state and dry state.The frictional sliding constitutive parameters were analyzed according to Ruina-Dieterich(R-D) constitutive model;and the influence of the asperities and fractal dimensions of polished surfaces for the samples on the constitutive parameter was analyzed.The test results reveal that the three parameters which are the mean diameter of the asperity,the mean height of the asperity and the mean height of the surface profile are different for different rocks under the same polishing condition.As for the mean diameter of the asperity,the mean height of the asperity and the mean height of the surface profile increase,the constitutive parameters are decreased with the linear law.The surface topography of the sliding surface finer,fractal dimension is larger.The constitutive parameters are increased with the linear law as fractal dimension increases.
引文
[1]黄庭芳,陈颙.岩石物理学[M].北京:北京大学出版社,2001:140–160.(HUANG Tingfang,CHEN Yong.Rock physics[M].Beijing:Peking University Press,2001:140–160.(in Chinese))
    [2]JAEGER J C,COOK N G W,ZIMMERMAN R W.Fundamentals ofrock mechanics[M].4th ed.New York:Blackwell Publishing,2007:65–79.
    [3]WANG W B.Micromechanics of rock friction and wear processes:Atheoretical and experimental study[Ph.D.Thesis][D].New York:Columbia University,1994.
    [4]MARONE C,HOBBS B E,ORD A.Coulomb constitutive laws forfriction:contrasts in frictional behavior for distributed and localizedshear[J].Pure and Applied Geophysics,1992,139(2):195–214.
    [5]MARONE C,COX S J D.Scaling of rock friction constitutiveparameters:the effects of surface roughness and cumulative offset onfriction of gabbro[J].Pure and Applied Geophysics,1994,143(1):359–385.
    [6]LOUIS P,LIU H P.Laboratory measurement of internal friction inrocks and minerals at seismic frequencies[J].Methods of ExperimentalPhysics,1987,24(1):31–56.
    [7]SCHOLZ C H.Earthquakes and friction laws[J].Nature,1998,391(6662):37–42.
    [8]SCHOLZ C H.The critical slip distance for seismic faulting[J].Nature,1988,336(6201):761–763.
    [9]DIETERICH J H.Modeling of rock friction 1.Experimental resultsand constitutive equations[J].Journal of Geophysical Research,1979,84(B5):2 161–2 168.
    [10]DIETERICH J H.Fault stability under conditions of variable normalstress[J].Geophysical Research Letters,1992,19(16):1 691–1 694.
    [11]RUINA A.Slip instability and state variable friction laws[J].Journalof Geophysical Research,1983,88(B12):10 359–10 370.
    [12]何昌荣.两种摩擦本构关系的对比研究[J].地震地质,1999,21(2):137–146.(HE Changrong.Comparing two types of rate and statedependent friction laws[J].Seismology and Geology,1999,21(2):137–146.(in Chinese))
    [13]BYERLEE J.Friction of rocks[J].Pageoph,1978,116(1):615–626.
    [14]马胜利,屿本利彦.蒙脱石的脱水作用对断层摩擦本构行为的影响[J].地震地质,1995,17(4):289–304.(MAShengli,SHIMAMOTOToshihiko.Effect of dehydration of montmorillonite on constitutivebehavior of friction[J].Seismology and Geology,1995,17(4):289–304.(in Chinese))
    [15]黄建国,张流.水对断层摩擦滑动稳定性的影响[J].地震地质,2002,24(3):387–399.(HUANG Jianguo,ZHANG Liu.The effect ofwater on stability of frictional sliding of fault[J].Seismology andGeology,2002,24(3):387–399.(in Chinese))
    [16]谭文彬,何昌荣.高温高压及干燥条件下斜长石和辉石断层泥的摩擦滑动研究[J].地学前缘,2008,15(3):279–286.(TAN Wenbin,HE Changrong.Frictional sliding of pyroxene and plagioclase gougesin gabbro under elevated temperature and dry condition[J].EarthScience Frontiers,2008,15(3):279–286.(in Chinese))
    [17]REINEN L A,WEEKS J D,TULLIS T E.The frictional behavior oflizardite and antigorite serpentinites:experiments,constitutive models,and implications for natural faults[J].Pageoph,1994,143(1):317–358.
    [18]TULLIS T E.Rock friction constitutive behavior from laboratoryexperiments and its implications for an earthquake prediction fieldmonitoring program[J].Pure and Applied Geophysics,1988,126(2):555–588.
    [19]LI Q,TULLIS T E,GOLDSBY D,et al.Frictional ageing frominterfacial bonding and the origins of rate and state friction[J].Nature,2011,480(7376):233–236.
    [20]NORRISH K,QUIRK J P.Crystalline swelling of montmorillonite:use of electrolytes to control swelling[J].Nature,1954,173(4397):255–257.
    [21]谭罗荣,孔令伟.蒙脱石晶体胀缩规律及其与基质吸力关系研究[J].中国科学:D辑,2001,44(6):498–507.(TAN Luorong,KONGLingwei.Study of swelling-shrinkage regularity of montmorillonitecrystal and its relation with matric suction[J].Science China:Ser.D,2001,44(6):498–507.(in Chinese))
    [22]BARTON N.Review of a new shear-strength criterion for rock joints[J].Engineering Geology,1973,7(4):287–332.
    [23]李小兵,刘莹.表面形貌分形表征方法的比较[J].南昌大学学报:理科版,2006,30(1):84–86.(LI Xiaobing,LIU Ying.Thecomputation methods of the fractal dimension of surface profiles[J].Journal of Nanchang University:Natural Science,2006,30(1):84–86.(in Chinese))
    [24]王建军,徐西鹏.花岗石抛光表面的粗糙度、分形维数及其关系研究[J].计量学报,2007,28(2):124–128.(WANG Jianjun,XU Xipeng.Roughness and fractal dimension of polished granite surface and theirrelationship[J].Acta Metrologica Sinica,2007,28(2):124–128.(inChinese))
    [25]蒋书文,姜斌,李燕,等.磨损表面形貌的三维分形维数计算[J].摩擦学学报,2003,23(6):533–536.(JIANG Shuwen,JIANG Bin,LI Yan,et al.Calculation of fractal dimension of worn surface[J].Tribology,2003,23(6):533–536.(in Chinese))
    [26]SUN W,XU G,GONG P,et al.Fractal analysis of remotely sensedimages:A review of methods and applications[J].International Journalof Remote Sensing,2006,27(22):4 963–4 990.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心