隔震橡胶支座屈曲稳定性的影响因素分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用有限元方法(FEM)对具有较低第2形状系数的隔震橡胶支座屈曲承载力的影响因数进行了分析研究。采用大型通用有限元软件Abaqus建立了隔震橡胶支座的三维有限元模型,橡胶材料考虑Neo-Hookean模型,支座内部钢板采用弹性和理想弹塑性本构关系,影响因数包括支座内部单层钢板厚度、支座内部孔洞直径、内部橡胶剪切模量和支座橡胶保护层厚度。分析结果包括水平屈曲荷载、水平屈曲位移以及支座水平变形时竖向变形。并将屈曲位移FEM结果和规范公式计算结果进行了对比。分析结果表明,内部钢板考虑弹塑性时支座更不利;内部钢板厚度的增加和支座内部孔洞直径的减少,支座的屈曲水平荷载和屈曲位移将增加,但后者影响程度大于前者;内部橡胶G值和橡胶保护层厚度对屈曲水平荷载和屈曲水平位移的影响规律比较类似,在一定范围内有影响,但超过该范围之后,影响程度有限,特别是屈曲水平位移。规范公式计算相对FEM结果而言偏于保守,前者未能考虑支座内部单层钢板厚度及橡胶保护层厚度的影响,有待进一步完善。
In this paper,the influence factors of buckling capacity of rubber bearing with lower second shape factor have been analyzed,in which the finite element method(FEM) was employed.A large general finite element software Abaqus was used,the three dimensional finite element model of isolator was established,the Neo-Hookean model was considered for the rubber material,the elastic and elastic-perfectly plastic constitutive model were used for the inner steel material.The influence factors included thickness of the single inner steel,diameter of the internal hole,shear modulus of inner rubber and thickness of rubber cover of isolator.The analysis results included the horizontal critical buckling load and horizontal critical buckling displacement and the vertical deformation of isolator when horizontal displacement occurring.And FEM results of the buckling critical displacement and results of the code formula were compared.The analysis results show that the inner steel plate considering elastic-plastic may be more adverse.Thickness of the inner steel plate increasing and the internal hole diameter of bearing decreasing will cause the horizontal critical buckling load and displacement to increase,but the degree of the latter influence is greater than that of the former.The shear modulus of the inner rubber and thickness of cover rubber effect on the horizontal critical buckling load and displacement are similar,there are a few influence in a certain range,but excess to this range,the influence will be limited,especially for the horizontal critical buckling displacement.The results of the code formula relative to FEM results tend to be conservative,which failed to consider the effect of thickness of the inner steel plate and thickness of rubber cover and needs to be further investigation.
引文
[1]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [2]GB50011—2010建筑抗震设计规范[S].
    [3]刘文光,杨巧荣,周福霖.建筑用铅芯橡胶隔震支座温度性能研究[J].世界地震工程,2003,19(2):39-44.
    [4]何文福,刘文光,杨彦飞,等.橡胶支座水平剪切弹塑性能力学试验研究[J].兰州理工大学学报,2007,33(3):120-123.
    [5]韩强,杜修力,刘文光,等.橡胶隔震支座拉伸性能试验研究[J].北京工业大学学报,2006,32(3):208-212.
    [6]刘文光,杨巧荣,周福霖.天然橡胶隔震支座温度相关性试验研究[J].广州大学学报:自然科学版,2002,1(6):51-56.
    [7]杨巧荣,庄学真,刘文光,等.夹层橡胶隔震支座全刚性性能、回转性能及高压缩应力性能试验研究[J].地震工程与工程振动,2000,20(4):118-125.
    [8]Shakhzod M Takhirov,James M Kelly.Numerical study on buckling of elastomeric seismic isolation bearing[C]//Structures.Report,2006:1-10.
    [9]Jared Weisman,Gordon P Warn.Stability of elastomeric and leadrubber seismic isolation bearings[J].Journal of Structural Engineering,138(2):215-222.
    [10]GB/T 20688.3—2006橡胶支座第3部分:建筑隔震橡胶支座[S].

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心