局部复杂场地条件对核电结构自振特性的影响分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
自振特征是核电厂结构动力分析首先应考虑的因素,它也是影响核电厂反应谱特征的关键因素之一。采用常规的自振特性分析方法(如Lanczos法等)只能以核电厂上部结构为模型进行计算求其固有频率,在复杂场地条件下,这样的计算结果通常与更符合实际的土-结构相互作用(SSI)模型计算结果存在较大差异。本文以SASSI用户手册中的典型压水堆核电厂土-结构动力相互作用模型为研究对象,采用时域显式有限元法结合透射人工边界方法及相应编写的三维显式有限元程序3DSSI,计算了同一上部结构,结合多工况局部复杂场地条件的核电厂SSI体系的单脉冲响应,并通过求传递函数幅值谱方法,获得各种工况下SSI体系的自振频率。依据计算结果,分别研究了核电厂上部结构、自由场及SSI体系的自振特征及其相互联系,并通过比较研究,讨论了局部复杂场地特性对核电厂SSI体系自振特性影响等问题,进而加深了对核电厂动力特征及动力安全区性的认知。
Vibration frequency characteristic analysis is one of necessary considerations during the dynamic analysis of nuclear power plant(NPP).This is also one of key factors influencing the response spectrum of nuclear power plant.Conventional methods of modal analysis(such as Lanczos method,etc) are only used to calculate model and natural frequencies when the system is upper structure.The results obtained by using the conventional method are quite different from the calculations of soil-structure interaction(SSI) model,which is more consistent with the actual conditions of complex site.In this paper,a typical PWR nuclear power plant in SASSI user's manual is used to study the frequency characteristics of soil structure dynamic interaction system.The lumped-mass explicit finite element with local transmitting artificial boundary method in time domain and the corresponding three-dimensional explicit finite element program 3DSSI are employed to compute the unite pulse responses of NPP SSI system under various local complex site conditions.Then,the results based on these pulse responses are used to calculate the free vibration frequencies of various case conditions of NPP SSI system by calculating the transfer function amplitude spectra.According to the calculating results above,a detailed discussion of vibration characteristics and their mutual relationship among NPP's upper structure,free field and SSI system.Through the comparative study of the effects of the complex local site on NPP SSI system vibration characteristics,the understanding of the nuclear power plant dynamic characteristics and cognition of dynamic security become more profound.
引文
[1]国家技术监督局.GB50267-97核电厂抗震设计规范[S].北京:中国计划出版社,1998.General Administration of Quality and Technical Supervision.GB50267-97 Code for Seismic Design of Nuclear Power Plant[S].Beijing:ChinaPlanning Press,1998.(in Chinese)
    [2]Sadegh-Azar H,Hartmann H.Fundamentals of seismic design of nuclear power plants and influence of soil-structure interaction[J].Bauinge-nieur,2011,86:S3-S10.
    [3]Meng J,Yang S,Wang Y.Three-dimensional seismic analysis and safety evaluation for nuclear pump of nuclear power plant based on the RCC-Mcode[J].Advances in Vibration Engineering,2011,10(4):343-352.
    [4]国家质量技术监督局.GB17741-2005工程场地地震安全性评价技术规范[S].北京:国家质量技术监督局,2005.General Administration of Quality and Technical supervision.GB17741-2005 Code for Seismic Safety Evaluation of Engineering Site[S].Beijing:General Administration of Quality and Technical Supervision,2005.(in Chinese)
    [5]尹华伟.土-结构动力相互作用的计算方法研究[D].长沙:湖南大学,2005.YIN Huawei.The research on analysis method of soil-structure dynamic interaction[D].Changsha:Hunan University,2005.(in Chinese)
    [6]林皋,栾茂田,陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993(4):1-13.LIN Gao,LUAN Maotian,CHEN Huaihai.Soil-structure interaction effect on the nonlinear seismic response of high-rise buildings[J].China CivilEngineering Journal,1993,26(4):1-13.(in Chinese)
    [7]杜修力,赵建锋.考虑土-结构相互作用效应的结构地震响应时域子结构分析法[J].北京工业大学学报,2007(5):517-523.DU Xiuli,ZHAO Jianfeng.A time domain substructure method for seismic response analysis with soil-structure interaction effect[J].Journal ofBeijing University of Technology,2007,33(5):517-523.(in Chinese)
    [8]X Z,W J L,H J B.Three dimensional soil-structure-wave interaction analysis in time domain[J].Earthquake Engineering&Structural Dynamics,1999,36:1501-1524.
    [9]J L,B S,M T,et al.SASSI/S—A system for analysis of soil-structure interaction[G].University of California,Berkeley,1981.
    [10]杨笑梅,郭达文,杨柏坡.三维土-结构动力相互作用体系分析的两步时域显式波动有限元过程[J].地震工程与工程振动,2011,(31):9-17.YANG Xiaomei,GUO Dawen,YANG Baipo.A two-step explicit finite element method in time domain for 3D dynamic SSI analysis[J].Journal ofEarthquake Engineering and Engineering Vibration,2011,31(4):9-17.(in Chinese)
    [11]Choun Y S,Choi I K,Seo J M.Improvement of the seismic safety of existing nuclear power plants byan increase of the component seismic capaci-ty:A case study[J].Nuclear Engineering and Design,2008,238:1410-1420.
    [12]Paskalova A,Reeseb S.Deterministic and probabilistic floor response spectra[J].Soil Dynamics and Earthquake Engineering,2003,23:605-618.
    [13]Bommer J J,Papaspiliou M,Price W.Earthquake response spectra for seismic design of nuclear power plants in the UK[J].Nuclear Engineeringand Design,2011,241(3):968-977.
    [14]李忠献.考虑土结构相互作用效应的核电厂地震响应分析[D].天津:天津大学,2006.LI Zhongxian.Seismic response analysis of nuclear power plants considering soil-structure interaction effects[D].Tianjin:Tianjin University,2006.
    [15]李忠献,李忠诚,梁万顺.考虑地基岩土参数不确定性的核电厂结构随机地震反应分析[J].核动力工程,2006(2):30-35.LI Zhongxian,LI Zhongcheng,LIANG Wanshun.Stochastic seismic response analysis for nuclear power plant structure considering parameter un-certainties of soil[J].Nuclear Power Engineering,2006,27(2):30-35.(in Chinese)
    [16]李建波,林皋,朱秀云,等.核电厂楼层谱抗震计算的场地模型及其影响分析[J].核动力工程,2010(4):91-95.LI Jianbo,LIN Gao,ZHU Xiuyun,et al.Study on ground numerical models for foor response spectra analysis of nuclear power plant and their influ-ences[J].Nuclear Power Engineering,2010,31(4):91-95.(in Chinese)
    [17]李忠献,陈岩,梁万顺,等.核电厂结构的楼层反应谱分析[J].福州大学学报:自然科学版,2005(S1):62-67.LI Zhongxian,CHEN Yan,LIANG Wanshun,et al.Floor response spectrum analysis of nuclear power plant structure[J].Journal of Fuzhou Uni-versity:Natural Sciences Edtion,2005(S1):62-67.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心