前期动载对低塑性粉土静态和动态强度的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
低塑性粉土广泛存在于世界范围内,在地震中容易产生液化现象,然而一些基础设施破坏不仅见于地震中也发生在地震后,这就决定了研究低塑性粉土震后行为的必要性。以美国中部密西西比河沿岸低塑性粉土为试验材料,研究动载对低塑性粉土静态和动态强度的影响。在动三轴仪上对试样施加动载引起超孔隙水压力,排水重固结后,分别对2组震动后试样进行静态和动态三轴强度试验。试验结果表明,当液化水平小于0.70时,前期动载对粉土的不排水剪切强度影响不大;相反地,只有当液化水平大于0.70,密西西比河沿岸粉土的震后重固结体积应变和不排水剪切强度才伴随着液化水平的提高显著增加,但相对于砂土而言,重固结体积应变在较低的液化水平时即有明显增加。与前期动载对不排水剪切强度的影响不同,当动载所引起的液化水平为0.35或轴向应变为0.2%时,抗液化强度达到最大值,若液化水平大于0.35,抗液化强度伴随液化水平提高而降低。如果前期荷载引起较大的压应变,在重固结后第二次动载循环中,轴向压力相比轴向拉力引起较小的超孔隙水压力。
Low-plasticity silt widely spreads all over the world,and its liquefaction easily develops in earthquake events.Some failure of civil infrastructures happened not only during but also after earthquakes,indicating that it is necessary to study postcyclic behavior of low-plasticity silt.The Mississippi River Valley silt in central America was selected as testing material.Excess pore water pressure was produced by cyclic loading in cyclic triaxial testing system and then dissipated for reconsolidation.Monotonic and cyclic triaxial tests were respectively conducted on two series of specimens experiencing the previous dynamic shearing.The testing results show that the dynamic shearing with a liquefaction level larger than 0.70 produced significant increases in the volumetric strain due to reconsolidation and undrained shear strength.Compared to sand,the Mississippi River Valley silt has an obvious increase on undrained shear strength at lower liquefaction level.The previous dynamic shearing showed a different effect on liquefaction resistance with on undrained shear strength.With a liquefaction level of 0.35 or a cyclic axial strain of 0.2%,the liquefaction resistance reached the peak and then decreased with an increase in liquefaction level larger than 0.35.With a large compression strain due to previous dynamic loading,the excess pore pressure developed less in the compression than in the extension during the second cyclic loading after reconsolidation.
引文
[1]康军.黄土公路隧道工程[M].北京:人民交通出版社,2011:1.(KANG Jun.Highway tunnel engineering in loess[M].Beijing:ChinaCommunications Press,2011:1.(in Chinese))
    [2]BOUNLANGER R W,IDRISS I M.Liquefaction susceptibilitycriteria for silts and clays[J].Journal of Geotechnical and GeoenvironmentalEngineering,2006,132(11):1 413-1 426
    [3]常方强,贾永刚,郭秀军,等.黄河口粉土液化过程的现场振动试验研究[J].岩土工程学报,2009,31(4):609-616.(CHANGFangqiang,JIAYonggang,GUO Xiujun,et al.In-situ vibration tests onliquefaction of silt in estuary of the Yellow River[J].Chinese Journalof Geotechnical Engineering,2009,31(4):609-616.(in Chinese))
    [4]刘小丽,刘红军,贾永刚.黄河三角洲饱和粉土层地震液化判别方法及液化特征研究[J].岩石力学与工程学报,2007,26(增1):2981-2 987.(LIU Xiaoli,LIU Hongjun,JIA Yonggang.Investigation onprediction methods and characteristics of earthquake-induced liquefactionof silty soil in the Yellow River Delta[J].Chinese Journal of RockMechanics and Engineering,2007,26(Supp.1):2 981-2 987.(inChinese))
    [5]SEED H B,IDRISS I M,ARANGO I.Evaluation of liquefactionpotential using field performance data[J].Journal of GeotechnicalEngineering,1983,109(3):458-482.
    [6]姚运生,景立平,黄江,等.徐州市棠张镇铁路路基液化性能研究[J].岩石力学与工程学报,2004,23(17):2959-2965.(YAOYunpsheng,JING Liping,HUANG Jiang,et al.Research on behaviorof soil liquefaction for the roadbed of railroad in Tangzhang Town,Xuzhou City[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(17):2 959-2 965.(in Chinese))
    [7]阮永芬,巫志辉.饱和粉土的若干动力特性研究[J].岩土工程学报,1995,17(4):101-106.(RUAN Yongfen,WU Zhihui.Somedynamic properties of saturated sandy loam[J].Chinese Journal ofGeotechnical Engineering,1995,17(4):101-106.(in Chinese))
    [8]王建华,赵娜.相同剪切波速的原状与重塑饱和松散粉土的抗液化强度[J].岩土工程学报,2007,29(1):39-43.(WANG Jianhua,ZHAO Na.Cyclic liquefaction resistances of undisturbed and remoldedsaturated loose silts with the same shear wave velocity[J].ChineseJournal of Geotechnical Engineering,2007,29(1):39-43.(in Chinese))
    [9]曾长女,刘汉龙,陈育民.细粒含量对粉土动孔压发展模式影响的试验研究[J].岩土力学,2008,29(8):2193-2198.(ZENGChangnu,LIU Hanlong,CHEN Yuming.Test study on influence of fine particlecontent on dynamic pore water pressure development mode of silt[J].Rock and Soil Mechanics,2008,29(8):2 193-2 198.(in Chinese))
    [10]张民生,刘红军,李晓东,等.波浪作用下黄河口粉土液化与“铁板砂”形成机制的模拟试验研究[J].岩土力学,2009,30(11):3347-3 351.(ZHANG Minsheng,LIU Hongjun,LI Xiaodong,et al.Studyof liquefaction of silty soil and mechanism of development of hardlayer under wave actions at Yellow River Estuary[J].Rock and SoilMechanics,2009,30(11):3 347-3 351.(in Chinese))
    [11]周相国,邢贵发,苏玉国.天津地区饱和粉土地震液化的试验研究[J].岩土力学,2009,30(12):3813-3819.(ZHOU Xiangguo,XINGGuifa,SU Yuguo.Experimental study of earthquake liquefaction ofsaturated silt in Tianjin area[J].Rock and Soil Mechanics,2009,30(12):3 813-3 819.(in Chinese))
    [12]YASUHARA K,MURAKAMI S,SONG B W,et al.Postcyclicdegradation of strength and stiffness for low plasticity silt[J].Journalof Geotechnical and Geoenvironmental Engineering,2003,129(8):756-769.
    [13]SONG B W,YASUHARA K,MURAKAMI S.Direct simple sheartesting for post-cyclic degradation in stiffness of nonplastic silt[J].Geotechnical Testing Journal,2004,27(6):1-7.
    [14]刘汉龙,曾长女,周云东.饱和粉土液化后变形特性试验研究[J].岩土力学,2007,28(9):1866-1870.(LIUHonglong,ZENGZhangnu,ZHOU Yundong.Test study on post-liquefaction deformation behaviorof silt ground[J].Rock and Soil Mechanics,2007,28(9):1 866-1 870.(in Chinese))
    [15]HYDE A F L,HIGUCHI T,YASUHARA T.Postcyclic recompression,stiffness,and consolidated cyclic strength of silt[J].Journal of Geotechnicaland Geoenvironmental Engineering,2007,133(4):416-423.
    [16]徐超,陈忠清,叶观宝,等.冲击碾压法处理粉土地基试验研究[J].岩土力学,2011,32(增2):389-392.(XU Chao,CHEN Zhongqing,YE Guanbao,et al.Experimental research on ground improvement ofsilt using impact roller compaction[J].Rock and Soil Mechanics,2011,32(Supp.2):389-392.(in Chinese))
    [17]FINN W D L,BRANSBY P L,PICKERING D J.Effect of strainhistory on liquefaction of sand[J].Journal of Soil Mechanics andFoundations Division,1970,96(6):1 917-1 933.
    [18]EMERY J J,FINN W D L,LEE K W.Uniformity of saturated sandspecimen[C]//Seventy-fifth Annual Meeting American Society forTesting and Materials.Los Angeles,Calif.,US:ASTM Special TechnicalPublication,1973:182-194.
    [19]PORCINO D,CARIDI G.Pre-and post-liquefaction response of sandin cyclic simple shear[C]//Geo-Denver 2007 New Peaks in Geotechnics,Denver,Colorado,US:ASCE Geotechnical Special Publication,2007:10.
    [20]ISHIHARA K,OKADA S.Effects of large preshearing on cyclicbehavior of sand[J].Soils and Foundations,1982,22(3):99-125.
    [21]BRADSHAW A S,BAXTER C D P.Sample preparation of silts forliquefaction testing[J].Geotechnical Testing Journal,30(4):324-332.
    [22]WANG S,LUNA R,STEPHENSON R W.A slurry consolidationapproach to reconstitute low-plasticity silt specimens for laboratorytriaxial testing[J].ASTM Geotechnical Testing Journal,2011,34(4):288-296.
    [23]WANG S.Postcyclic behavior of low-plasticity silt[Ph.D.Thesis][D].Rolla,Mo,US:Missouri University of Science and Technology,2011.
    [24]SANIN M V,WIJEWICKREME D.Cyclic shear response of channel-fillfraser river delta silt[J].Soil Dynamics and Earthquake Engineering,2006,26(9):854-869.
    [25]CHERN J C,LIN C C.Post-cyclic consolidation behavior of loosesands[C]//Specialty Conference on Vertical and Horizontal Deformationsof Foundations and Embankments,College Station,Texas,US:ASCEGeotechnical Special Publication,1994:740-747.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心