三轴低频循环荷载下盐岩体积应变特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地下储气库围岩长期处于复杂疲劳应力状态下,盐岩三轴循环荷载下的变形规律对储气库稳定性分析有参考价值。对8个盐岩试块进行了不同围压、不同应力水平和不同频率条件下的循环荷载试验。对每一试块施加恒定围压和轴向低频循环荷载。对试验参数进行了无量纲处理,分析了应力比强度(广义剪应力强度与球应力的比值)、应力比振幅、上限应力水平、荷载频率、循环次数(N)等对体积应变(?v)的影响。利用函数?v=?lg N+?v0,对每一试块的体积应变–循环次数曲线进行了拟合分析,获得了参数?和?v0随应力比振幅、上限应力水平和频率变化的数学表达式。标准化回归系数分析表明,上限应力水平是影响盐岩体积变形的主要因素,其次是应力比振幅。在高上限应力水平三轴状态下,盐岩主要表现出体积扩大现象。
The surrounding rock salt of underground gas storage cavern is subjected to long-term triaxial fatigue stress. The deformation property of rock salt under triaxial cyclic loading is of great importance to the stability of the rock salt cavity. A series of laboratory tests are performed to explore the deformation behavior of eight rock salt specimens under various confining pressures, stress levels and loading frequencies. The axial low-frequency cyclic stress is applied on each salt specimen while the confining pressure is kept steady. The test parameters are processed by the dimensionless method. The effects of the strength of stress ratio(ratio of generalized shear strength to spherical stress), amplitude of stress ratio, level of the maximum stress, loading frequency and loading cycles(N) on the volumetric strain(?v) of rock salt are analyzed. The nonlinear curve fitting is carried out using the function ?v =?lg N+?v0 for a curve of each specimen on the volumetric strain with the cycles. Further, the expressions for the parameters ? and ?v0 with the amplitude of stress ratio, the maximum stress and loading frequency are obtained, respectively. The analysis of standardization regression coefficient indicates that the maximum stress is the key factor that influences the volumetric deformation of rock salt, and the stress amplitude ratio comes the second. It is noted that the rock salt exhibits dilatancy under high maximum stress.
引文
[1]FUENKAJORN K,PHUEAKPHUM D.Effects of cyclic loading on mechanical properties of Maha Sarakham salt[J].Engineering Geology,2010,112(1/2/3/4):43–52.
    [2]BROUARD B,BEREST P,DJIZANNE H,et al.Mechanical stability of a salt cavern submitted to high-frequency cycles[C]//7th Conference on the Mechanical Behavior of Salt.Paris,2012:381–389.
    [3]LIANG Wei-guo,ZHANG Chuan-da,GAO Hong-bo,et al.Experiments on mechanical properties of salt rocks under cyclic loading[J].Journal of Rock Mechanics and Geotechnical Engineering,2012,4(1):54–61.
    [4]郭印同,赵克烈,孙冠华,等.周期荷载下盐岩的疲劳变形及损伤特性研究[J].岩土力学,2011,32(5):1353–1359.(GUO Yin-tong,ZHAO Ke-lie,SUN Guan-hua,et al.Experimental study of fatigue deformation and damage characteristics of salt rock under cyclic loading[J].Rock and Soil Mechanics,2011,32(5):1353–1359.(in Chinese))
    [5]杨春和,马洪岭,刘建锋.循环加、卸载下盐岩变形特性试验研究[J].岩土力学,2009,30(2):3562–3568.(YANG Chun-he,MA Hong-ling,LIU Jian-feng.Study of deformation of rock salt under cycling loading andunloading[J].Rock and Soil Mechanics,2009,30(2):3562–3568.(in Chinese))
    [6]高红波,梁卫国,徐素国,等.循环载荷作用下盐岩力学特性响应研究[J].岩石力学与工程学报,2011,30(增刊1):2617–2623.(GAO Hong-bo,LIANG Wei-guo,XU Su-guo,et al.Study of mechanical behavior response of salt rock under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(S1):2617–2623.(in Chinese))
    [7]任松,白月明,姜德义,等.温度对盐岩疲劳特性影响的试验研究[J].岩石力学与工程学报,2012,31(9):1839–1845.(REN Song,BAI Yue-ming,JIANG De-yi,et al.Experimental study of temperature effect on fatigue property of salt rock[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1839–1845.(in Chinese))
    [8]陈存礼,谢定义,高鹏.球应力往返作用下饱和砂土变形特性的试验研究[J].岩石力学与工程学报,2005,24(3):513–520.(CHEN Cun-li,XIE Ding-yi,GAO Peng.Testing study on deformation characteristics of saturated sand under repeated spherical stress[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(3):513–520.(in Chinese))
    [9]卢兴利,刘泉声,张伟,等.高应力软岩非弹性体积增加试验研究[J].煤炭学报,2009,34(7):903–906.(LU Xing-li,LIU Quan-sheng,ZHANG Wei,et al.Test study of inelastic volume increase of soft rock in high stress[J].Journal of China Coal Society,2009,34(7):903–906.(in Chinese))
    [10]陈宗基,康文法.在岩石破坏和地震之前与时间有关的扩容[J].岩石力学与工程学报,1983,2(1):11–21.(CHEN Zong-ji,KANG Wen-fa.Time dependent dilatancy prior to rock failure and eathqakes[J].Chinese Journal of Rock Mechanics and Engineering,1983,2(1):11–21.(in Chinese))
    [11]金济山.岩石扩容性质及其本构模型的研究[J].岩石力学与工程学报,1993,12(2):162–172.(JIN Ji-shan.Study of the dilatancy behavior of rocks and its constitutive model[J].Chinese Journal of Rock Mechanics and Engineering,1993,12(2):162–172.(in Chinese))
    [12]YUAN S C,HARRISON J P.An empirical dilatancy index for the dilatant deformation of rock[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(4):679–686.
    [13]ALEJANO L R,ALONSO E.Considerations of the dilatancy angle in rocks and rock masses[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(4):481–507.
    [14]卢兴利,刘泉声,苏培芳.考虑扩容碎胀特性的岩石本构模型研究与验证[J].岩石力学与工程学报,2013,32(9):1886–1893.(LU Xing-li,LIU Quan-sheng,SU Pei-fang.Constitutive model of rocks considering dilatancy-bulking behaviour and its calibration[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(9):1886–1893.(in Chinese))
    [15]杨圣奇,刘相如.不同围压下断续预制裂隙大理岩扩容特性试验研究[J].岩土工程学报,2012,34(12):2188–2197.(YANG Sheng-qi,LIU Xiang-ru.Experimental investigation on dilatancy behavior of marble with pre-existing fissures under different confining pressures[J].Chinese Journal of Geotechnical Engineering,2012,34(12):2188–2197.(in Chinese))
    [16]佟全.泥质盐岩压缩与蠕变试验及地下储气库稳定性分析[D].南京:解放军理工大学,2013.(TONG Quan.Tests of compression and creep on muddy rock salt and the analysis of stability of underground gas storage[D].Nanjing:PLA University of Science and Technology,2013.(in Chinese))
    [17]王岩,隋思涟.试验设计与MATLAB数据分析[M].北京:清华大学出版社,2012.(WANG Yan,SUI Si-lian,Experiment design and MATLAB data analysis[M].Beijing:Tsinghua University Press,2012.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心