大型单轴离心振动台的复合控制策略
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对离心振动台中轻柔基础与上平台间的动态耦合及各非线性因素使系统性能恶化的问题,在传统伺服控制策略的基础上提出了一种复合控制策略。根据耦合等效模型设计几何解耦控制器,以消除轻柔基础与上平台间的动态耦合;综合考虑各非线性因素对系统性能的影响,提出了基于鲁棒控制的反馈控制器和基于两自由度控制的前馈控制器来保证系统的稳定性和控制精度;引入负载干扰力补偿控制器,以减小负载动态特性变化对系统性能的影响。仿真结果表明,经前馈、反馈校正和几何解耦后,离心振动台的频宽已提高至250Hz,完全满足伺服控制策略的频宽要求。经负载干扰力补偿后,在负载特性剧烈下降阶段位置闭环的超调量和调整时间已减少至未采用补偿的50%,且在负载特性随机波动阶段位置闭环的波形失真也得到了显著改善。
A combined control strategy based on traditional servo control strategies is proposed to solve the dynamic coupling between the light-flexible base and the table,and to overcome the performance deterioration of centrifugal shaker caused by nonlinear factors. A geometry decoupling controller based on the equivalent coupling model is designed to eliminate the dynamic coupling between the light-flexible base and the table.Effects of all nonlinear factors on the system performance are taken into account,and a feedback controller based on robust control and a feed-forward controller based on 2-DOF control are presented to ensure the stability and control accuracy of the system.A load disturbing force compensator is also introduced to counteract the influence of load characteristics variation on system performance.Simulation results show that the bandwidth of the centrifugal shaker is improved to 250 Hz after the feedback and feed-forward adjusting and geometry decoupling,and satisfies the anticipated bandwidth requirement of servo control strategy.When the load disturbing force is compensated,the overshoot and adjustment time of position close-loop in the radical drop section of load characteristics reduce to 50% of that without using compensation,and the close-loop waveform distortion in the random fluctuation section of load characteristics is also improved.
引文
[1]张建民,于玉贞,濮家骝,等.电液伺服控制离心振动台系统研制[J].岩土工程学报,2004,26(6):843-845.ZHANG Jianmin,YU Yuzhen,PU Jialiu,et al.Development of a shaking table in electro-hydraulic servocontrol centrifuge[J].Chinese Journal of Geotechnical Engineering,2004,26(6):843-845.
    [2]王永志.振动离心机系统工作原理与初步设计[D].哈尔滨:中国地震局工程力学研究所,2010.
    [3]CONTE J P,TROMBETTI T L.Linear dynamic modeling of a uni-axial servo-hydraulic shaking table system[J].Earthquake Engineering and Structural Dynamics,2000,29:1375-1404.
    [4]罗中宝,杨志东,丛大成,等.大型液压离心振动台的耦合特性分析[J].振动与冲击,2014,33(11):17-25.LUO Zhongbao,YANG Zhidong,CONG Dacheng,et al.The coupling characteristic analysis of large hydraulic centrifugal shaker[J].Journal of Vibration and Shock,2014,33(11):17-25.
    [5]STOTEN D P,SHIMIZU N.The feedforward minimal control synthesis algorithm and its application to the control of shaking-tables[J].Proceedings of the IMechE:Part I Journal of Systems and Control Engineering,2007,221:423-444.
    [6]GIZATULLIN A O,EDGE K A.Adaptive control for a multi-axis hydraulic test rig[J].Proceedings of the IMechE:Part I Journal of Systems and Control Engineering,2006,221:183-198.
    [7]CUYPER J D,VERHAEGEN M,SWEVERS J.Offline feed-forward and Hinf feedback control on a vibration rig[J].Control Engineering Practice,2003,11:129-140.
    [8]VAES D,ENGELEN K,ANTHONIS J,et al.Multivariable feedback design to improve tracking performance on tractor vibration test rig[J].Mechanical Systems and Signal Processing,2007,21:1051-1075.
    [9]UCHIYAMA Y,MUKAI M,FUJITA M.Robust control of electrodynamic shaker with 2DOF control using Hinf filter[J].Journal of Sound and Vibration,2009,326:75-87.
    [10]IWASAKI M,ITO K,KAWAFUKU M,et al.Disturbance observer-based practical control of shaking tables with nonlinear specimen[C]∥Proceedings of the16th IFAC World Congress International Federation of Automatic Control.Piscataway,NJ,USA:IEEE,2005:1251-1256.
    [11]UCHIYAMA Y,FUJITA M.Robust disturbanceforce compensator for time waveform replication of an electrodynamic shaker[J].JSME Journal of System Design and Dynamics,2010,4(1):1-12.
    [12]HE Yunbo,CHUA P S,LIM G H.Performance analysis of a two-stage electrohydraulic servovalve in centrifugal force field[J].Journal of Fluids Engineering,2003,125:166-170.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心