含瓦斯煤剪切破裂过程细观演化
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
运用自主研发的煤岩细观剪切实验装置,开展了不同成型压力条件下含瓦斯煤剪切破裂过程研究。研究含瓦斯煤剪切破裂过程中微细观裂纹的开裂、扩展、贯通演化规律,对比分析成型压力对含瓦斯煤抗剪强度及剪切破裂最终形态的影响。研究发现:随成型压力增加含瓦斯煤密实度增大,抗剪强度增大;剪切破裂过程裂纹扩展速率与开裂位置偏离预定剪切面距离有关,预定剪切面上剪应力大扩展速率快,偏离预定剪切面扩展裂纹受力减小,扩展速率低,甚至会终止扩展而不能贯通;裂纹扩展形态与成型压力有关,成型压力小,密实度低,抗剪强度低,裂纹容易扩展,剪切带范围小,成型压力大,密实度高,抗剪强度高,裂纹不容易扩展,剪切带范围大;含瓦斯煤剪切破裂过程左侧固定右侧受剪切荷载作用,容易形成雁行排列,为实现最终贯通,破坏雁行排列之间会有张拉牵引裂纹产生。
With the self-developed meso-shear test equipment for coal and rock shear fracture tests on coal containing gas were carried out under different molding pressures. The rules of the cracks' initiation,evolution and transfixion were studied at a mesoscopic level. Also different molding pressure impacts on shear strength and the final shear fracture were analyzed. The results suggest that the coal density and the shear strength increase with the increase of molding pressure. The speed of crack propagation is related to the distance between the predetermined shear plane and the cracking position. On predetermined shear plane the shearing stress is high and the speed is fast,and the propagation crack force decreases as it is away from the predetermined shearing plane,even cannot be transfixed. The crack morphology is related to molding pressure of gas-filled coal. The crack propagation is easy with low molding pressure,low density and shear strength. The crack propagation is difficult with high molding pressure,high density and shear strength. Because the left of the coal is fixed and the right is loaded during the shear fracture process,it is easy to form echelon crack. Eventually the tension cracks will be developed between echelon cracks.
引文
[1]Lajtai E Z.Shear strength of weakness planes in rock[J].International Journal for Rock Mechanics and Mining Science,1969,6(5):499-515.
    [2]Riedel W.Zur Mechanik geologischer Brucherscheinungen[J].Zentral-blatt fur Mineralogie,Geologie und Paleontologie,1929(B):354-368.
    [3]Ernst C.Experimental analysis of fracture patterns[J].Geological Society of America Bulletin,1955,66(3):241-256.
    [4]刘冬梅,龚永胜,谢锦平,等.压剪应力作用下岩石变形破裂全程动态监测研究[J].南方冶金学院学报,2003,24(5):69-72.Liu Dongmei,Gong Yongsheng,Xie Jinping,et al.Wholly dynamic testing study of rock deformation and fracture under compressive and shearing stress[J].Journal of Southern Institute of Metallurgy,2003,24(5):69-72.
    [5]许江,彭守建,尹光志,等.含瓦斯煤岩细观剪切实验装置的研制及应用[J].岩石力学与工程学报,2011,30(4):677-685.Xu Jiang,Peng Shoujian,Yin Guangzhi,et al.Development of meso-shear test equipment for coal rock containing gas and its application[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(4):677-685.
    [6]许江,陆丽丰,杨红伟,等.剪切荷载作用下砂岩细观开裂扩展演化特征研究[J].岩石力学与工程学报,2011,30(5):944-950.Xu Jiang,Lu Lifeng,Yang Hongwei,et al.Study of evolution law of microfracturing process of sandstone under shear load[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(5):944-950.
    [7]Horii H,Nemat-nasser S.Compression-induced microcrack growth in brittle solids:Axial splitting and shear failure[J].Journal of Geophysical Research,1985,90(B4):3105-3125.
    [8]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特性[J].岩石力学与工程学报,1993,12(4):304-312.Ling Jianming,Sun Jun.On mesocrack damage of brittle rocks and its time-dependent characterisics[J].Chinese Journal of Rock Mechanics and Engineering,1993,12(4):304-312.
    [9]朱珍德,张勇,李术才,等.用数字图像相关技术进行红砂岩细观裂纹损伤特性研究[J].岩石力学与工程学报,2005,24(7):1123-1128.Zhu Zhende,Zhang Yong,Li Shucai,et al.Studies on microcosmic crack damage properties of a red sandstone with digital image technique[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(7):1123-1128.
    [10]尚嘉兰,孔常静,李廷芥,等.岩石细观损伤破坏的观测研究[J].实验力学,1999,14(3):373-383.Shang Jialan,Kong Changjing,Li Tingjie,et al.Observation and study on meso-damage and fracture of rock[J].Journal of Experimental Mechanics,1999,14(3):373-383.
    [11]Zhu Z D,Ni X H,Wang W,et al.Dynamic experimental study on rock meso-cracks growth by digital image processing techniqu[J].J.Cent.South Univ.Technol.,2008,15(S2):114-120.
    [12]邢宝林,张传祥,潘兰英,等.生物质型煤机械强度影响因素的研究[J].煤炭科学技术,2007,35(7):83-85.Xing Baolin,Zhang Chuanxiang,Pan Lanying,et al.Research on influence factors to mechanical strength of biological mass type briquette[J].Coal Science and Technology,2007,35(7):83-85.
    [13]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986(3):9-16.Lin Baiquan,Zhou Shining.Experimental investigation on the deformation law of coal body containing methane[J].Journal of China University of Mining&Technology,1986(3):9-16.
    [14]王雷.剪切荷载条件下含瓦斯煤细观破坏实验研究[D].重庆:重庆大学,2011.Wang Lei.Partial fulfillment of the requirement for the degree of master of engineering[D].Chongqing:Chongqing University,2011.
    [15]劳恩B R,威尔肖T R.脆性固体断裂力学[M].北京:地震出版社,1985:41-43.
    [16]吉让寿.湖南锡矿山初始雁行张裂隙脉的研究[J].地质论评,1985,31(1):23-30.Ji Rangshou.Primary en-echelon tension fissure veins in the Sikuangshan ore district Hunan Province[J].Geological Review,1985,31(1):23-30.
    [17]曾庆丰.矿脉雁列规律及其意义[J].地质科学,1980(1):34-42.Zeng Qingfeng.On the regularity of en echelon arrangement of ore veins and its significance[J].Scientia Geologica Sinica,1980(1):34-42.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心