饱和海床土渗流-应力耦合损伤及液化破坏规律(Ⅰ)
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于重正化群理论在临界突变问题分析中的优势和岩土体的自相似特性,从海床土微观结构入手,引入三维颗粒堆积模型来描述孔隙渗流临界行为,找到了土体渗流与临界孔隙率的关系,给出了海床介质孔隙率与渗流发生的物理判别准则。在土体二元介质理论基础上,分析了饱和海床土宏观液化与微观强度的定量关系,构建了海床土体微单元破坏的重正化群模型,并对结构面断裂损伤临界概率进行了研究。研究结果表明:海床土液化是渗流-应力耦合场共同作用的结果,微单元体断裂损伤导致液化贯通带形成,进而引起海床土的宏观液化,液化贯通带的提出对研究海床土液化破坏规律有极其重要的意义。
With the advantage of renormalization group theory in critical mutation analysis and the self-similar characteristics of soil materials,the critical behavior of pore percolation and the relationships between seepage and critical porosity were found. In this paper,the critical behavior is described by the three-dimensional particle packing model from the microstructure of seabed soil. Specifically,the physical criterion is given to judge the seepage conditions associated with seabed medium porosity. Based on the binary medium theory,the quantitative relationship of macro-liquefaction and micro-strength of saturated seabed soil is analyzed. At the same time,the microbalance unit damage renormalization group model of seabed soil is built,and fracture damage critical probability of structural surface is studied. The results showed that the seabed soil liquefaction results from the interaction of seepage and stress coupling field. The formation of liquefied rupture band as a critical state is resulted from fracture damage of the micro unit cell,which leads to the macroscopic liquefaction of seabed soil. The soil liquefied rupture band method is important for the study of liquefaction failure regularity of saturated seabed soil.
引文
[1]汪闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散[C]//中国土木工程学会第一届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1964:224-235.
    [2]SEED H B,MARTIN P P,LYSMER J.Pore-water pressure changes during soil liquefaction[J].Journal of the Geotechnical Engineering Division,1976,102(4):323-346.
    [3]TATSUOKA I K.Undrained deformation and liquefaction of sand under cyclic stress[J].Soils and Foundations,1975,15(1):29-44.
    [4]TOWHATA I,ISHIHARA K.Shear work and pore water pressure in undrained shear[J].Soils and Foundations,1985,25(3):73-84..
    [5]谢定义,张建民.饱和砂土瞬态动力学特性和机理分析[M].西安:陕西科学技术出版社,1995:3-10.XIE Dingyi,ZHANG Jianmin.Transient dynamics characteristics and mechanism analysis of saturated sand[M].Xi’an:Shaanxi Publishing House of Science&Technology,1995:3-10.
    [6]曹亚林,何广讷,林皋.土中振动孔隙水压力升长程度的能量分析法[J].大连理工大学学报,1987(3):83-89.CAO Yalin,HE Guangna,LIN Gao.An energy approach for analysing the development of cyclic proe water pressure[J].Journal of Dalian University of Technology,1987(3):83-89.
    [7]石兆吉,郁寿松.砂性土剪切波速与液化强度的关系[J].世界地震工程,1991(3):16-23.SHI Zhaoji,YU Shousong.Sandy soil shear wave velocity and liquefaction strength[J].Journal of the World Earthquake Engineering,1991(3):16-23.
    [8]栾茂田,王栋.考虑土骨架加速度效应的海床动力反应及其影响因素分析[J].海洋学报,2002,24(6):112-119.LUAN Maotian,WANG Dong.Numerical analyses and parametric studies of dynamic response of seabed considering the effect of soil skeleton acceleration[J].Acta Oceanologica Sinica,2002,24(6):112-119.
    [9]刘红军,王小花,贾永刚,等.黄河三角洲饱和粉土液化特性及孔压模型试验研究[J].岩土力学,2005,26(Suppl1):83-87.LIU Hongjun,WANG Xiaohua,JIA Yonggang,et al.Experimental study on liquefaction properties and pore-water pressure model of saturated silt in Yellow River Delt[J].Journal of Rock and Soil Mechanics,2005,26(Suppl1):83-87.
    [10]陈国兴,王炳辉.局部排水条件下南京细砂振动孔压的波动特性[J].岩土工程学报,2010,32(5):767-773.CHEN Guoxing,WANG Binghui.Fluctuating characteristics of excess pore water pressure in Nanjing fine sand under partially drained conditions[J].Journal of Geotechnical Engineering,2010,32(5):767-773.
    [11]潘华,陈国兴,刘汉龙.饱和南京细砂液化后大变形特性试验研究[J].岩石力学与工程学报,2011,30(7):1475-1481.PAN Hua,CHEN Guoxing,LIU Hanlong.Study of behaviour of large post-liquefaction deformation in saturated nanjing fine sand[J].Journal of Rock Mechanics and Engineering,2011,30(7):1475-1481.
    [12]孙田,陈国兴,周恩全,等.深层海床粉质黏土动剪切模量和阻尼比试验研究[J].土木工程学报,2012,45(Suppl1):9-13.SUN Tian,CHEN Guoxing,ZHOU Enquan,et al.Experimental research on the dynamic shear modulus and the damping ratio of deep-seabed marine silty clay[J].Civil Engineering Journal,2012,45(Suppl1):9-13.
    [13]VICSEK T.Fractal growth phenomena[M].Singapore:World Scientific,1989:89-94.
    [14]张德兴.重正化群在临界理论中的应用[J].郑州大学学报:理学版,2004,36(2):50-53.ZHANG Dexing.Application of renormalization group in critical theory[J].Journal of Zhengzhou University,2004,36(2):50-53.
    [15]黄继成,黄彭.运用重正化群方法对沥青混合料渗透性研究[J].同济大学学报:自然科学版,2007,35(7):904-908.HUANG Jicheng,HUANG Peng.Permeability study of asphalt mixtures with renormalization method[J].Journal of Tongji University:Natural Science,2007,35(7):904-908.
    [16]谢和平.分形-岩石力学导论[M].北京:科技出版社,1996:15-22.XIE Heping.Introduction to fractal-rock mechanics[M].Beijing:Science and Technology Press,1996:15-22.
    [17]周宏伟,谢和平.孔隙介质渗透率的重正化群预计[J].中国矿业大学学报,2000,29(3):245-248.ZHOU Hongwei,XIE Heping.Estimation of permeability of porous media by using renormalization group[J].Journal of China University of Mining&Technology,2000,29(3):245-248.
    [18]STANLEY H E.Renormalization group and percolation[J].Progress in Physics,1985,5(1):1-65.
    [19]沈珠江,陈铁林.岩土破损力学——结构类型与荷载分担[J].岩石力学与工程学报,2004,23(13):2137-2142.SHEN Zhujiang,CHEN Tielin.Breakage mechanics of geomaterial-structure types and load sharing[J].Chinese Journal of Rock Mechanics and Enineering,2004,23(13):2137-2142.
    [20]施泽进,涂涛.裂隙连通性研究的重正化群方法[J].成都理工学院学报,1997,24(3):58-62.SHI Zejin,TU Tao.The renormalization group approach applied to study of crack conduction[J].Journal of Chengdu University of Technology,1997,24(3):58-62.
    [21]HUDSON J A,FAIRHURST C.Tensile strength,Weibull's theory and a general statistical approach to rock failure[C]//The Proceedings of the Southampton 1969 Civil Engineering Materials Conference.Southampton.Southampton,England,1969.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心