压电智能传感器力学模型的建立及数值模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以单片压电陶瓷(如锆钛酸铅,简称PZT)晶体、粘贴式和埋入式压电传感器为研究对象,从压电本构方程和结构动力学的振动原理出发,采用集总质量法推导出PZT传感器正压电效应的电荷表达式及等效刚度表达式,建立粘贴式和埋入式PZT传感器的简化力学模型,得到考虑多参数影响的电荷表达式.考虑黏结胶层阻尼吸收能量的作用,建立了胶层阻尼效应影响的传感模型,并求得压电传感器的电压表达式.数值模拟结果表明:在PZT传感模型中,利用压电方程和振动方程联合求解可以快速得到PZT的传感信号,而且PZT片的电压输出特性与作用力的大小及黏结胶层有关.通过测量和分析PZT传感器输出电信号峰值与频率的变化,并与数值分析结果进行对比,证明了运用所建立的传感模型能够有效地模拟检测PZT的正压电规律.
Based on single PZT crystals,the surface-bonded and embedded piezoelectric sensors,from the piezoelectric constitutive equations and structural dynamics theory,the equivalent stiffness and the charge expression of PZT sensor based on direct piezoelectric effect are deduced by adopting lumped mass method. The simplified mechanical model for sensor of the surface-bonded and embedded PZT is presented. The charge expressions of multi-parameters influence are derived. The results of numerical simulation and theoretical study showed that the PZT sensor signal can be quickly obtained by joint solving piezoelectric equation and vibration equation. The voltage output of PZT sensor signal is associated with the amplitude of the driving as well as adhesive layer. The amplitude of the output signal is proportional to the peak value of the input driving force. A group of numerical simulation and analysis are carried out to validate the efficiency of the developed model and effectively simulate and detect direct piezoelectric rule of PZT sensor.
引文
[1]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [2]孙宝元,钱敏,张军.压电式传感器与测力仪研发回顾与展望[J].大连理工大学学报,2001,41(2):127-133.
    [3]孙明清,李卓球.压电陶瓷—混凝土机敏结构研究[J].混凝土,2004(2):5-9.
    [4]朱炳杰,陶溢,吴宇列,等.杯形陀螺压电片粘结胶层对谐振子振动特性的影响规律研究[J].传感器技术,2011,24(9):1248-1252.
    [5]孙艾薇.结构健康监测中的压电传感技术研究[D].长沙:中南大学,2010.
    [6]Shi Yan,Wei Sun,Yanyu Meng.Crack Monitoring for Reinforced Concrete Columns Based on Piezoceramic Transducers[C]//San Diego:Proceedings of SPIE,2009:136-146.
    [7]Lee C K.Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators,Part I:Governing Equations and Relationships[J].Journal of the Acoustical Society of America,1990,87(3):1144-1158.
    [8]Chai W K,Smithmaitrie P,Tzou H S.Neural Potentials and Micro-Signals of Non-Linear Deep and Shallow Conical Shells[J].Mechanical Systems and Signal Processing,2004,18(4):959-975.
    [9]Tong L Y,Sun D C H,Atluri S N.Sensing and Actuating Behaviors of Piezoelectric Layers with Debonding in Smart Beams[J].Smart Materials and Structures,2001,10(4):713-723.
    [10]Song G B,Olmi C,Gu H C.An Overheight Vehicle-Bridge Collision Monitoring System Using Piezoelectric Transducers[J].Smart Materials and Structures,2007,16(2):462-468.
    [11]Yashar M,Gu H C,Belarbi A,et al.Smart Aggregate-Based Damage Detection of Circular RC Columns under Cyclic Combined Loading[J].Smart Materials and Structures,2010,19(6):140-158.
    [12]Matveenko V P,Kligman E P,Yurlov M A,et al.Simulation and Optimization of Dynamic Characteristics of Piezoelectric Smart Structures[J].Physical Mesomechanics,2012,15(3):190-199.
    [13]孙威.利用压电陶瓷的智能混凝土结构健康监测技术[D].大连:大连理工大学,2009.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心