CO_2增强地热系统中的井网间距优化研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以松辽盆地为研究场地,采用数值模拟方法,研究五点布井法在不同井间距条件下,温度场、生产井流量、热提取率、累计热量、CO2封存量及压力降的变化特征。结果表明,注入井与生产井相距越近,储层的温度、流量变幅越大,稳定生产期和热突破时间越短;系统运行初期,具有较高的热提取率和累计热量,但其变化较大,不稳定。运行一段时间后,注入井与生产井井距近的系统热提取率和累计热量比井距较远的低。生产井与注入井之间压力降的增加有助于提高地热开采。从CO2储存角度看,生产井与注入井的井间距远有助于CO2的封存。
The distance between the injection well and production well is an important parameter in the design of geothermal engineering. This paper takes Songliao basin as an example to research the influence of five points well spacing on temperature field,production well's flow,thermal extraction ratio,total quantity of heat and CO2 sequestration,and the change features of pressure drop. The result showed that the nearer well spacing,the greater of reservoir temperature and flow, what 's more, the shorter of the breakthrough time. At an early stage, the production,located close to injection well,has higher heat extraction rate and total quantity of heat,however,their range has much greater,and more volatile. After some time,their heat extraction and total quantity of heat are worse than the far away wells. For large well spacing, it 's conductive to CO2 sequestration, and that the increase of pressure drop contribute to improve geothermal exploitation.
引文
[1]Brown D W.A hot dry rock geothermal energy concept utilizing supercritical CO2instead of water[A].Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering[C],Stanford,California,2000.
    [2]Pruess K.Enhanced geothermalsystems[EGS]using CO2as working fluid:A novel approach for generating renewable energy with simultaneous sequestration of carbon[J].Ceothermics,2006,35(4):351—367.
    [3]Pruess K.On production behavior of enhanced geothermal systems with CO2as working fluid[J].Energy Conversion and Management,2008,49(6):1446—1454.
    [4]吴乾蕃.松辽盆地地热场[J].地震研究,1991,(1):31—40.[4]Wu Qianfan.The geothermal field in Songliao basin[J].Journal of Seismological Research,1991,(1):31—40.
    [5]田伟志,孟元林,李斌,等.松辽盆地北部地热场特征及其影响因素探讨[A].中国地球物理·2009[C],北京,2009.
    [6]吴乾蕃,谢毅真.松辽盆地大地热流[J].地震地质,1985,(2):59—64.[6]Wu Qianfan,Xie Yizhen.Geothermal heat flow in the Song huang Jian-liao ning basin[J].Seismology and Geology,1985,(2):59—64.
    [7]张俊虎,刘君.煤层气井网布置优化设计的探讨[J].科技情报开发与经济,2008,(10):210—212.[7]Zhang Junhu,Liu Jun.Probe into the optimal design of coal-bed methane well network[J].Sci-Tech Information Development&Economy,2008,(10):210—212.
    [8]Pruess K,Oldenburg M C,Moridis J G.TOUGH2user’s guide version 2[R].Lawrence Berkeley National Laboratory,Berkeley,1999.
    [9]Xu Tianfu,Pruess Karsten.Modeling multiphase nonisothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks:1.Methodology[J].Americal Journal of Science,2001,301(1):16—33.
    [10]王洋,张可霓.增强型地热系统(EGS)的裂隙模拟方法[J].上海国土资源,2011,(3):77—80.[10]Wang Yang,Zhang Keni.Modeling approaches for fractures in enhanced geothermal system(EGS)[J].Shanghai Land&Resources,2011,(3):77—80.
    [11]张炜,许天福,吕鹏,等.二氧化碳增强型地热系统的研究进展[J].地质科技情报,2013,(3):177—182.[11]Zhang Wei,Xu Tianfu,Lv Peng,et al.A review of carbon dioxide-based enhanced geothermal system[J].Geological Science and Technology Information,2013,(3):177—182.
    [12]许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42—45.[12]Xu Tianfu,Zhang Yanjun,Zeng Zhaofa,et al.Technology progress in an enhanced geothermal system(hot dry rock)[J].Science&Technology Review,2012,30(32):42—45.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心