完整岩体对测井频率应力波的滤波特性
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
不同频率范围内的应力波在岩体的传播过程中,衰减系数对频率的依赖性具有显著差异。通过现场试验研究完整岩体对测井频率范围内应力波的滤波特性,针对常用黏弹性模型在描述衰减系数与频率关系存在不足,在频域上对黏性系数进行非定常处理,建立黏性系数非定常Maxwell模型,采用波形相关系数评价改进模型的滤波效果。研究结果表明,完整岩体总体上表现为低通滤波,在低通滤波范围内具有非等间距带通滤波特性,随传播距离增加,带通数逐渐减小;在吸收频率过渡带,应力波衰减系数随频率变化非常快,黏性系数非定常Maxwell模型能够有效描述应力波在完整岩体中的衰减系数变化规律;吸收频率过渡带的边界频率与传播距离成负指数关系,吸收频率过渡带的陡度参数可以近似认为是常数;随传播距离增加,黏性系数非定常Maxwell模型描述完整岩体的滤波效果明显提高,当传播距离为4.75m时,波形相关系数达到0.89,表明采用改进模型描述完整岩体是有效的。
The effects of stress wave in different frequency ranges on attenuation coefficient are different. The filtering properties of stress wave propagating in intact rock mass within scope of log frequency were studied through field test. Based on the shortcoming of common viscoelastic model predicting the relationship between attenuation coefficient and frequency,Maxwell model for unsteady viscosity coefficient was established after the unsteady treatment of viscosity coefficient. The filtering effect of the improved model was evaluated using the waveform correlation coefficient. The study results indicated that intact rock mass has a low-pass filtering property and unequal interval band-pass property within scope of a low-pass filter, the number of band-pass decreases with increase in propagation distance; attenuation coefficients of stress wave with frequency change greatly in the transition zone of absorption frequency,the change rule of attenuation coefficient of stress wave propagation in intact rock mass is effectively described with the improved Maxwell model for unsteady viscosity coefficient; the boundary frequency of the transition zone of absorption frequency has a negative exponential relationship with propagation distance,the edge gradient parameter of the transition zone of absorption frequency is approximately constant. The filtering effect of intact rock mass improves obviously using the improved Maxwell model with increase in propagation distance; the waveform correlation coefficient reaches 0. 89 when propagation distance of stress wave is 4. 75m; the improved model is capable of describing the filtering properties of intact rock mass.
引文
[1]Müller T M,Gurevich B,Lebedev M.Seismic wave attenuation and dispersion resulting form wave-induced flow in porousrocks:a review[J].Geophysics,2010,75(5):75A147-75A164.
    [2]Wang Z,Nur A.Dispersion analysis of acoustic velocities in rocks[J].Journal of the Acoustical Society of America,1990,87(6):2384-2395.
    [3]王海洋,孙赞东,Mark Chapman.岩石中波传播速度频散与衰减[J].石油学报,2012,33(2):332-342.WANG Hai-yang,SUN Zan-dong,Mark Chapman.Velocity dispersion and attenuation of seismic wave propagation in rocks[J].ACTA Petrolei Sinica,2012,33(2):332-342.
    [4]孙成禹,印兴耀.三参数常Q粘弹性模型构造方法研究[J].地震学报,2007,29(4):348-357.SUN Cheng-yu,YIN Xing-yao.Construction of constant qviscoelastic model with three parameters[J].ACTA Seismologica Sinica,2007,29(4):348-357.
    [5]Maranini E,Brignoli M.Creep behavior of a weakrock:experimental characterization[J].Journal of Structural Geology,2005,27(6):948-963.
    [6]Fabre G,Pellet F.Creep and time-dependent damage in argillaceous rocks[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(6):950-960.
    [7]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433-447.XU Wei-ya,YANG Sheng-qi,CHU Wei-jiang.Nonlinear viscoelasto plastic rheological model(hohai model)of rock and its engineering application[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(3):433-447.
    [8]熊良宵,杨林德,张尧.岩石的非定常Burgers模型[J].中南大学学报(自然科学版),2010,41(2):679-684.XIONG Liang-xiao,YANG Lin-de,ZHANG Yao.Nonstationary Burgers model for rock[J].Journal of Central South University(Science and Technology),2010,41(2):679-684.
    [9]刘林超,张卫.具有分数Kelvin模型的粘弹性岩体中水平圆形硐室的变形特性[J].岩土力学,2005,26(2):287-289.LIU Lin-chao,ZHANG Wei.Deformation properties of horizontal round adits in viscoelastic rocks with fractional Kelvin model[J].Rock and Soil Mechanics,2005,26(2):287-289.
    [10]施行觉,李成波,Adnan Aydin等.地球介质的非定常参数黏弹模型[J].地球物理学报,2009,52(1):50-56.SHI Xing-jue,LI Cheng-bo,Adnan Aydin,et al.Viscoe-lastic model with variable parameters for earth medium[J].Chinese J Geophs,2009,52(1):50-56.
    [11]张波,李术才,张敦福等.简谐波在黏弹性介质中波动传播的应力场研究[J].岩土力学,2011,32(8):2449-2454.ZHANG Bo,LI Shu-cai,ZHANG Dun-fu,et a1.Study of stress fields of simple harmonic wave propagation in viscoelastic media[J].Rock and Soil Echanics,2011,32(8):2449-2454.
    [12]黄小华,冯夏庭,陈炳瑞.广义黏弹组合模型的等效性及其基本性质[J].力学学报,2010,42(1):65-73.HUANG Xiao-hua,FENG Xia-ting,CHEN Bing-rui.Equivalences of the generalized viscoelastic models and their inherent properties[J].Chinese Journal of Theoretieal and Applied Mechanies,2010,42(1):65-73.
    [13]吴庆曾,李洪涛,杨进平.声波检测穿透信号波形变化规律和量化的探讨[J].物探与化探,2012,36(1):144-148.WU Qing-zeng,LI Hong-tao,YANG Jin-ping.Discussion on the variation and quantification of penetrating signal waveform in acoustic wave detection[J].Seophysical&Geochemical Exploration,2012,36(1):144-148.
    [14]樊耀新.断层对地震子波波形影响的研究[J].西北地震学报,1996,18(3):54-59.FAN Yao-xin.Study about influence of fault on seismic wavelet form[J].Northwestern Seismological Journal,1996,18(3):54-59.
    [15]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [16]凌同华,张胜,易志强等.岩石声发射信号能量分布特征的EMD分析[J].振动与冲击,2012,31(11):26-31.LING Tong-hua,ZHANG Sheng,YI Zhi-qiang,et al.Energy distribution characteristics of rock acoustic emission signals with EMD analysis[J].Journal of Vibration and Shock,2012,31(11):26-31.
    [17]张天骐,谭方青,高春霞,等.一种新的窗函数法设计余弦调制滤波器组系统[J].系统工程与电子技术,2011,33(12):2737-2742.ZHANG Tian-qi,TAN Fang-qing,GAO Chun-xia,et al.New windowing approach for designing cosine-modulated filter bank systems[J].Systems Engineering and Electronics,2011,33(12):2737-2742.
    [18]Ricker N H.黏弹性介质中的地震波[M].北京:地质出版社,1981.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心