柱端弯矩增大系数对PC框架结构抗震性能影响的研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
根据我国现行《预应力混凝土结构抗震设计规程》(JGJ 140-2004),以设防烈度为8度(0.2g)地区的多跨多层预应力混凝土框架结构柱端弯矩增大系数为研究对象,对其合理取值问题进行了探讨.在SAP2000与PERFORM-3D软件中,采用局部纤维铰梁单元,对6个PC平面框架建立了弹塑性分析模型,并对其进行了静力弹塑性分析(Pushover分析)与动力弹塑性时程分析.计算结果表明:按照现行规范设计的PC框架,基本上可以满足8度区罕遇地震作用下的抗震要求,但是结构在大震作用下形成的是以底层柱端出铰为主的梁柱铰屈服机制,对结构抗震不利;随着柱端弯矩增大系数的增加,结构的局部构件抗震性能以及屈服机制均有很大程度的改善,当边柱和中柱的柱端弯矩增大系数分别增加到2.0,1.8时,预应力混凝土框架结构能够实现对结构抗震有利的以梁出铰为主的梁柱铰屈服机制,甚至是梁铰屈服机制.因此,建议在进行预应力抗震技术规程的修订时,适当提高框架结构柱端弯矩增大系数的取值.
According to the current code for seismic design of prestressed concrete structures(JGJ140-2004),this paper discussed the problem of reasonable value about moment magnifying coefficients at column ends of multi-layer prestressed concrete frame structure in the 8degrees(0.2g)seismic grade district.Six elasto-plastic analysis models with different moment magnifying coefficients at column ends based on local fiber hinge beam element were established in SAP2000 and PERFORM-3Drespectively,and the static elasto-plastic analysis(Pushover)and dynamic elastic-plastic analysis were proceeded.The analysis results show that PC frame designed by the current aseismic codes forms the beam-column hinge hybrid yield mechanism,in which column hinge occupies the priority,adverse to the earthquake.As the moment magnifying coefficients at column ends increased gradually,the seismic performance of local components and yield failure mechanism of structure showed significant improvement.If the moment magnifying coefficients of middle and side columns separately increased at 2.0and 1.8,PC frame can form beam-column hinge hybrid yield mechanism,in which beam hinge or even beam hinge yield mechanism occupied the priority,favorable to the earthquake.Therefore,suggestions were given to improve appropriately the moment magnifying coefficients at the frame column end in the revision of code for seismic design of prestressed concrete structures.
引文
[1]张瀑,鲁兆红,淡浩.预应力混凝土框架结构实用设计方法[M].北京:中国建筑工业出版社,2012:1-11.ZHANG Pu,LU Zhao-hong,DAN Hao.The practical design method of prestressed concrete frame structure[M].Beijing:China Architecture&Building Press,2012:1-11.(In Chinese)
    [2]薛伟辰.现代预应力结构设计[M].北京:中国建筑工业出版社,2003:1-3.XUE Wei-chen.The design of modern prestressed structure[M].Beijing:China Architecture&Building Press,2003:1-3.(In Chinese)
    [3]JGJ 140-2004预应力混凝土结构抗震设计规程[S].北京:中国建筑工业出版社,2004:17-18.JGJ 140-2004Seismic design procedures for prestressed concrete structure[S].Beijing:China Architecture&Building Press,2004:17-18.(In Chinese)
    [4]GB 50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001:48-49.GB 50011-2001Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2001:48-49.(In Chinese)
    [5]GB 50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:54-55.GB 50011-2010Code for seismic design of buildings[S].Beijing:China Architecture&Building Press,2010:54-55.(In Chinese)
    [6]DOOLEY K L,BRECCI J M.Seismic evaluation of columnto-beam strength rations in reinforced concrete frames[J].ACI,Structural Journal,2001,98(6):843-851.
    [7]ONO T,ZHAO Y,ITO T.Probabilistic evaluation of column overdesign factors for frames[J].Journal of Structural Engineering,2000,126(5):605-611.
    [8]管民生,杜宏彪,韩大建.RC矩形柱框架结构不同柱-梁抗弯强度比的Pushover分析[J].建筑结构,2009,39(4):14-42.GUAN Min-sheng,DU Hong-biao,HAN Da-jian.Pushover analysis on rectangular column frames with different column to beam strength ratios[J].Buliding Structure,2009,29(4):14-42.(In Chinese)
    [9]蔡健,周靖,方小丹.柱端弯矩系数取值对RC框架结构抗震性能影响的评估[J].土木工程学报,2007,40(1):6-14.CAI Jian,ZHOU Jing,FANG Xiao-dan.Evaluation of influences of var ious moment magnifying coefficients at column ends of RC frames on seismic performance[J].China Civil Engineering Journal,2007,40(1):6-14.(In Chinese)
    [10]张耀庭,马超,郭宗明,等.不同弯矩增大系数钢筋混凝土框架结构地震易损性分析[J].建筑结构学报,2014,35(2):29-37.ZHANG Yao-ting,MA Chao,GUO Zong-ming,et al.Seismic fragility analysis for RC frame structures with various moment magnifying coefficients[J].Journal of Building Structures,2014,35(2):29-37.(In Chinese)
    [11]SCOTT B D,PARK R,PRIESTLEY M J N.Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J].ACI Journal,1982,79(2):13-27.
    [12]MANDER J B,PRIESTLEY M J N,PARK R.Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering,1988,114(8):1804-1826.
    [13]CHANG G A,MANDER J B.Seismic energy based fatigue damage analysis of bridge columns:part I—Evalualion of seismic capacity[R].Buffalo,NY:National Center for Earthquake Engineering Research,1994:3-30-3-43.
    [14]北京金土木软件技术有限公司.Pushover分析在建筑工程抗震设计中的应用[M].北京:中国建筑工业出版社,2010:36-37.Civil King Software.The application of pushover analysis in seismic design of building engineering[M].Beijing:China Architecture&Building Press,2010:36-37.(In Chinese)
    [15]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M].2版.北京:人民交通出版社,2012:71-73.Civil King Software,China Institute of Building Standard Design&Research.SAP2000Chinese version using guide[M].2nd.Beijing:China Communications Press,2012:71-73.(In Chinese)
    [16]曾明.PERFORM-3D基本操作与实例[M].北京:中国铁道出版社,2013:41-50.ZENG Ming.Basic operation and projects of PERFORM-3D[M].Beijing:China Railway Publishing House,2013:41-50.(In Chinese)
    [17]ABRAHAMSON N A.Non-stationary spectral matching[J].Seismological Research Letters,1992,63(1):30-39.
    [18]HANCOCK J,WATSON-LAMPREY J,ABRAHAMSON N A,et al.An improved method of matching response spectra of recorded earthquake ground motion using wavelets[J].Journal of Earthquake Engineering,2006,10:67-89.
    [19]GASPARINI D A,VANMARCKE E H E J.Simulated earthquake motions compatible with prescribed response spectra[M].Cambridge,MA:Massachusetts Institute of Technology,Department of Civil Engineering,1976:56-62.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心