基于β-二项分布的结构易损性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
易损性曲线建立过程中受激励不确定性和结构参数不确定性的影响,会引起结构或构件观测结果的统计相关性。为此,本文提出基于β-二项分布的结构易损性分析方法。该方法根据性能量化指标阈值和Monte Carlo模拟确定震后观测结果,采用β-二项分布探讨震后观测值的统计相关性;结合对数回归模型,推导了改进β-二项分布的累积分布函数,计算结构失效概率;通过累积对数正态分布拟合易损性曲线,比较了观测失效样本数与观测失效概率统计相关性对易损性的影响,并与未考虑统计相关性的传统易损性曲线作对比。某8层钢筋混凝土框架-剪力墙结构的算例表明,考虑统计相关性的易损性较传统易损性偏大,且结构遭受8度以上地震作用时,考虑失效样本数统计相关性的易损性使预测结果更为保守,利于工程安全。
The uncertainty of seismic excitation and structural parameters in the process of establishing fragility curves leads to statistical dependence among observations,which has been neglected in past applications.In this paper,a new methodology based on beta-binomial distribution to calculate structural fragility is presented.Observations indicating the states(failure or survival)are confirmed via quantitative indicators threshold as well as Monte Carlo after each earthquake.Beta-Binomial distribution is addressed to discuss the statistical dependence among observations.Improved cumulative beta-binomial distribution function is derivation to calculate failure probability combined with logistic regression model.Seismic vulnerability curve can be fitted by means of cumulative lognormal distribution,which is compared with traditional fragility that of neglecting statistical dependence among observations and fragility curve considering statistical dependence among observed failure rates.A seat eight floors reinforced concrete frame-shear structure is used as an example to illustrate the approach:fragility curve considered statistical dependence is larger than traditional fragility,and the proposed method taken into account statistical dependence among failures will be better conservative to ensure the safety of structures.
引文
[1]Tanaka S,Kameda H,Nojima N,et al.Evaluation of seismic fragility for highway transportation systems[A].Proceedings of the 12th World Conference on Earthquake Engineering[C].Upper Hutt,New Zealand,2000.
    [2]Shinozuka M,Feng M Q,Lee J,et al.Statistical analysis of fragility curves[J].Journal of Engineering Mechanics,ASCE,2000,126(12):1224-1231.
    [3]Basoz N,Kiremidjian A S.Risk assessment of bridges and highway systems from the Northridge earthquake[A].Proceedings of the National Seismic Conference on Bridges and Highways[C].Sacramento,California,1997.
    [4]Hwang H,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004,37(6):48-51.(HWANG H,LIU Jing-bo.Seismic fragility analysis of reinforced concrete bridges[J].China Civil Engineering Journal,2004,37(6):48-51.(in Chinese))
    [5]吴巧云,朱宏平,樊剑.基于性能的钢筋混凝土框架结构地震易损性分析[J].工程力学,2012,29(9):117-124.(WU Qiao-yun,ZHU Hong-ping,FAN Jian.Performance-based seismic fragility analysis of RC frame structures[J].Engineering Mechanics,2012,29(9):117-124.(in Chinese))
    [6]郑凯锋,陈力波,庄卫林,等.基于概率性地震需求模型的桥梁易损性分析[J].工程力学,2013,30(5):165-171.(ZHENG Kai-feng,CHEN Li-bo,ZHUANG Wei-lin,et al.Bridge vulnerability analysis based on probabilistic seismic demand models[J].Engineering Mechanics,2013,30(5):165-171.(in Chinese))
    [7]Jayadipta Ghosh,Jamie E P.Aging considerations in the development of time-dependent seismic fragility curves[J].Journal of Structural Engineering,2010,136(12):1497-1511.
    [8]宋鹏彦,吕大刚,崔双双.地震作用下钢筋混凝土框架结构连续倒塌极限状态可靠度分析[J].建筑结构学报,2013,34(4):15-22.(SONG Peng-yan,LDagang,CUI Shuang-shuang.Reliabilityanalysis of progressive collapse limit state of reinforced concrete frame structure under earthquakes[J].Journal of Building Structures,2013,34(4):15-22.(in Chinese))
    [9]Karim K R,Yamazaki F.Effects of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation[J].Earthquake Engineering&Structural Dynamics,2001,30(12):1839-1856.
    [10]Lu Y,Gu X,Guan J.Probabilistic drift limits and performance evaluation of reinforced concrete columns[J].Journal of Structural Engineering,2005,131(6):966-978.
    [11]Dutta A,Mander J B.Rapid and Detailed Seismic Fragility Analysis of Highway Bridges[R].New York,USA:Multidisciplinary Center for Earthquake Engineering Research,2001.
    [12]Daniel S,Armen D K.Seismic reliability assessment of infrastructure systems based on fragility models[A].Applications of Statistics and Probability in Civil Engineering-Proceedings of the 10th International Conference on Applications of Statistics and Probability[C].2007,7:435-436.
    [13]Daniel S,Armen D K.Seismic fragility modeling from empirical data[J].Structural Safety,2008,30(4):320-336.
    [14]Cimellaro G P,Reinhorn A M,Bruneau M,et al.Multi-Dimensional Fragility of Structure Formulation and Evaluation[R].Report No.MCEER-06-0002,New York:Multidisciplinary Center for Earthquake Engineering Research,2006.
    [15]Williams D A.Extra-binomial variation in logistic linear models[J].Applied Statistics,1982,31(2):144-148.
    [16]Poortema K.On modelling overdispersion of counts[J].Statistica Neerlandica,1999,53(1):5-20.
    [17]Pregibon D.Logistic regression diagnostics[J].Annals of Statistics,1981,9:705-724.
    [18]师义民,许勇,周丙常.近代统计方法选讲[M].西安:西北工业大学出版社,2008.(SHI Yi-min,XU Yong,ZHOU Bing-chang.Modern Statistical Methods[M].Xi’an:Northwestern Polytechnical University Press,2008.(in Chinese))
    [19]JGJ3-2002.高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2002.(JGJ3-2002.Technical Specification for Concretestructures of Tall Buildings[S].Beijing:China Building Industry Press,2002.(in Chinese))
    [20]高小旺,龚思礼,苏经宇,等.建筑抗震规范设计理解和应用[M].北京:中国建筑工业出版社,2002.(GAO Xiao-wang,GONG Si-li,SU Jing-yu,et al.The Understanding and Application for the Code of Seismic Design of Buildings[M].Beijing:China Building Industry Press,2002.(in Chinese))
    [21]FEMA 356Prestandard and Commentary for Seismic Rehabilitation of Buildings[S].Washington DC:American Society of Civil Engineers,2000.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心