新型方钢管混凝土分体短柱轴压受力性能
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的设计一种新型方钢管混凝土分体短柱(简称分体短柱),研究其破坏过程和受力性能,以便为分体短柱轴心受压设计提供理论依据.方法拟以分体短柱的套箍系数、截面形式、混凝土强度等级、分体短柱含钢率为试验参数,设计了8根方钢管混凝土短柱,并对其破坏形式和特征、其荷载-应变关系曲线、肋板的荷载-应变关系曲线以及承载力的敏感影响因素进行深入的研究.结果分体短柱和普通方钢管混凝土短柱(以下简称普通短柱)相比较破坏时受力相对均匀,呈现多处鼓曲.普通短柱后期承载力约为分体短柱的78%~82%.当分体短柱核心区混凝土强度由C30提高到C60时,其屈服强度提高约35%,荷载-应变关系曲线有明显的下降段.当含钢率由0.10提高到0.16时,其后期承载力约提高30%.套箍系数由1.02提高到1.80时,其后期承载力约提高30%.结论混凝土强度能够明显提高分体短柱极限承载力,但试件塑性变形能力降低.含钢率、套箍系数对承载力提高和塑性变形能力改善均有明显的作用.
A new type of CFST split short column was designed to study its failure process and mechanical behavior,in order to provide some theoretical references for designing the split short column under axial compression. Taking ferrule coefficient,cross section form,strength grade of core concrete and steel ratio of the split short column as test parameters,8 square CFST short columns were designed. The damage form,load-strain curves of steel tube and rib,and sensitive factors for bearing arestudied. It is found that in comparison with the ordinary CFST,the split short column has relatively uniform stress by damage; but several bulges occur. The bearing capacity of the ordinary CFST is about 78 % ~ 82 % of the split short column. When the strength grade of concrete increases from C30 to C60,the yield strength increases about by 35 %. The load-strain curve declines obviously. When the steel ratio increases from 0. 10 to 0. 16,the bearing capacity of the split short column increases by 30 %. The split short column bearing capacity increases by 30 % with increase of the ferrule coefficient from 1. 02 to 1. 80. Conclusion is that the concrete strength grade can increase the bearing capacity of the split column obviously. But its plastic deformation ability decreases. The steel ratio,the ferrule coefficient can obviously improve the bearing capacity and ductility.
引文
[1]陆新征,张万开,李易,等.方钢管混凝土短柱轴压承载力尺寸效应[J].沈阳建筑大学学报:自然科学版,2012,28(6):974-980.(Lu Xinzheng,Zhang Wankai,Li Yi,et al.Size effect of axial strength of concrete-filled square steel tube columns[J].Journal of Shenyang Jianzhu University:Nature Science,2012,28(6):974-980.)
    [2]欧智菁,陈宝春.钢管混凝土柱极限承载力的统一算法研究[J].土木工程学报,2012,45(7):80-86.(Ou Zhijing,Chen Baochun.Study on unified calculation method for the ultimate load carrying capacity of concrete filled steel tubular columns[J].China Civil Engineering Journal,2012,45(7):80-86.)
    [3]张志权,赵均海,张玉芬,等.复合钢管混凝土柱轴压承载力计算[J].长安大学学报:自然科学版,2010,30(1):67-71.(Zhang Zhiquan,Zhao Junhai,Zhang Yufen,et al.Axial bearing capacity of composite concrete-filled steel tubular columns[J].Journal of Chang'an University:Natural Science Edition,2010,30(1):67-71.)
    [4]陈彦江,李勇,闫维明,等.大尺寸钢管混凝土柱承载力试验[J].中国公路学报,2011,24(4):33-39.(Chen Yanjiang,Li Yong,Yan Weiming,et al.Bearing capacity test of large size concrete filled steel tubular column[J].China Journal of Highway and Transport,2011,24(4):33-39.)
    [5]王铁成,张磊,赵海龙,等.钢管混凝土柱抗震性能参数影响分析[J].建筑结构学报,2013,34(S1):339-345.(Wang Tiecheng,Zhang Lei,Zhao Hailong,et al.Analysis of parameter influence on seismic behavior of concrete filled square steel tubular columns[J].Journal of Building Structures,2013,34(S1):339-345.)
    [6]蔡健,郑新志,陈庆军,等.劲化方形截面钢管混凝土短柱轴压试验研究[J].建筑结构学报,2014,35(3):175-178.(Cai Jian,Zheng Xinzhi,Chen Qingjun,et al.Experimental study on axial compression behavior of stiffened square section section CFST short columns[J].Building Structures,2014,35(3):175-178.)
    [7]Martirossyan A,Xiao Y.Flexural-shear behavior of high-strength concrete short columns[J].Earthquake Spectra,2010,17(4):679-695.
    [8]Essawy A S,El-Hawary M.Strength and ductility of spirally reinforced rectangular concrete columns[J].Construction and Building Materials,2008,12(3):221-230.
    [9]Sheikh S A,Toklucu M T.Reinforced concrete columns confined by circular spirals and hoops[J].ACI Structural Journal,2006,90(5):146-157.
    [10]Yashiro H,Tanaka Y,Nagano M.Study on shear failure mechanisms of reinforced concrete short columns[J].Engineering Fracture Mechanics,2010,35(1):277-289.
    [11]林育新.浅谈钢砼短柱的判别及避免出现短柱破坏的措施[J].福建建筑,2007(12):43-46.(Lin Yuxin.On the differentiation of short column frame and the measures for prevention the destroy of the short column[J].Fujian Architecture and Construction,2007(12):43-46.)
    [12]许振齐,傅光耀,章干城,等.过渡区对混凝土分体柱框架中节点应力应变的影响[J].水利与建筑工程学报,2013,11(1):51-56.(Xu Zhenqi,Fu Guangyao,Zhang Gancheng,et al.Influence of transition regions on stress and stain in split columns frame joints of concrete[J].Journal of Water Resources and Architectural Engineering,2013,11(1):51-56.)
    [13]代崇阳.钢筋混凝土分体柱抗震机理及分体柱框架性态抗震设计[D].天津:天津大学,2007.(Dai Chongyang.Seismic mechanism of RC split column and performance-based seismic design of RC frame with split columns[D].Tianjin:Tianjin University,2007.
    [14]杜永山.钢筋混凝土超短柱和型钢混凝土超短柱滞回性能试验研究部[D].哈尔滨:哈尔滨工业大学,2007.(Du Yongshan.An experimental study on hystertic behavior of reinforced concrete short columns and steel reinforced concrete[D].Harbin:Harbin Institute of Technology,2007.)
    [15]尤鸿珺,黄东升,周爱萍,等.钢筋混凝土分体柱在侧向荷载作用下的弹塑性分析[J].四川建筑科学研究,2011,37(4):46-48.(You Hongjun,Huang Dongsheng,Zhou Aiping,et al.Elastic plastic analyses of reinforced concrete split column under lateral force[J].Sichuan Building Science,2011,37(4):46-48.)
    [16]李亚萍.混凝土分体柱侧向刚度的简化计算[D].西安:长安大学,2012.(Li Yaping.Simplified calculation of lateral stiffness of concrete split columns[D].Xi'an:Chang'an University,2012.)
    [17]李忠献,代崇阳.钢筋混凝土分体柱抗震机理[J].地震工程与工程抗震,2007,27(3):41-46.(Li Zhongxian,Dai Chongyang.Seismic mechanism of reinforced concrete split column[J].Journal of Earthquake Engineering and Engineering Vibration,2007,27(3):41-46.)
    [18]李忠献.钢筋混凝土分体柱理论与技术[J].工程力学,2005,22(S):127-142.(Li Zhongxian.Theory and technology of split reinforced concrete columns[J].Engineering Mechanics,2005,22(S):127-142.)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心