开阔地貌台风风场现场实测与风洞试验应用研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于100m高测风塔上风速仪的现场实测数据,获得了开阔地貌台风风场的平均风速剖面与湍流度剖面模型。在大气边界层风洞中准确模拟了台风风场和《建筑结构荷载规范》(GB 50009—2001)规定的B类风场,并通过一个大跨刚性模型测压试验,详细分析与对比了两类风场条件下大跨屋面风荷载分布规律特征。研究结果表明:在开阔场地条件下,台风近地边界层平均风速沿高度分布符合对数律,亦满足指数律,风剖面幂指数介于规范规定的A类风场与B类风场之间,平均湍流度比B类风场规定值大1倍;台风风场作用下,开阔地貌大跨结构屋面风荷载受湍流度的影响远高于受平均风速剖面的影响,体型系数随湍流度的增大而增大,屋面风荷载亦随之增大。
Models of mean wind speed profile and turbulence intensity profile of typhoon wind field for open terrain were obtained based on the filed measurement data recorded from anemometers installed on a 100 m height meteorological tower.The typhoon wind field and that of terrain category B specified in Load code for the design of building structures( GB50009—2001) were accurately simulated in a atmospheric boundary layer wind tunnel respectively, and then the characteristics of wind loads on a large-span roof structure based on the wind tannel tests with a rigid model were analyzed and compared. The results reveal that the vertical distribution of mean wind speed over open terrain in the surface boundary layer can be well described by a logarithmic profile and power-law profile,and the value of the exponent of the power-law profile is between that stipulated in the load code for terrain category A and B. The average values of the turbulence intensity observed during the typhoon wind are two times as high as those proposed by the design code of terrain category B.The effect of turbulence on wind pressures for the large-span roof is more significant than that of the mean wind speed profile. The shape coefficients of the building structure increase with the increase of the turbulence levels. The wind pressures acting on the large-span roof also increase.
引文
[1]GB 50009—2001建筑结构荷载规范[S].北京:中国建筑工业出版社,2002.
    [2]GB 50009—2012建筑结构荷载规范[S].北京:中国建筑工业出版社,2012.
    [3]SHARMA R N,RICHARDS P J.A re-examination of the characteristics of tropical cyclone winds[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,83:21-33.
    [4]AS/NZ 1170.2∶2002 Structural design actions part2:wind actions[S].Sydney:Standards Australia,2002.
    [5]CAO S,TAMURA Y,KIKUCHI N,et al.Wind characteristics of a strong typhoon[J].Journal of Wind Engineering and Industrial Aerodynamics,2009,97:11-21.
    [6]ISHIZAKI H.Wind profiles,turbulences intensities and gust factors for design in typhoon-prone regions[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,13:55-66.
    [7]陈晓冬,赵林,王小松,等.广州新光大桥良态及台风气候抖振试验研究[J].地震工程与工程振动,2007,27(4):74-79.
    [8]王小松,赵林,葛耀君,等.台风对大跨度钢桁拱桥抗风性能的影响[J].同济大学学报:自然科学版,2009,37(1):13-19.
    [9]赵林,葛耀君,朱乐东.台风气候大跨度桥梁风振响应研究[J].振动工程学报,2009,22(3):237-245.
    [10]胡尚瑜,宋丽莉,李秋胜.近地边界层台风观测及湍流特征参数分析[J].建筑结构学报,2011,32(4):1-8.
    [11]CHOI E C C.Characteristics of typhoons over the South China Sea[J].Journal of Wind Engineering and Industrial Aerodynamics,1978,3:353-365.
    [12]POWELL M D,VICKERY P J,REINHOLD T A.Reduced drag coefficient for high wind speeds in tropical cyclones[J].Nature,2003,422:279-283.
    [13]宋丽莉,毛慧琴,汤海燕,等.广东沿海近地层大风特性的观测分析[J].热带气象学报,2004,20(6):731-736.
    [14]李秋胜,戴益民,李正农,等.强台风“黑格比”登陆过程中近地风场特性[J].建筑结构学报,2010,31(4):54-61.
    [15]LAM K M,ZHAO J G.Occurrence of peak lifting actions on a large horizontal cantilevered roof[J].Journal of Wind Engineering and Industrial Aerodynamics,2002,90:897-940.
    [16]EMIL S,ROBERT H S.Wind effects on structures:fundamentals and applications to design[M].New York:John Wiley&Sons,1996.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心