考虑流固耦合钻井液冲蚀引起的钻柱失效分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于钻柱与钻井液耦合影响因素分析,建立了钻柱失效模型,利用流固耦合和钻柱振动的基本理论对钻柱的振动频率和振动速度进行了求解,分析了钻井液密度、流速、流动应力以及钻柱的振动频率和速度对钻柱失效的影响,在此基础上利用冲蚀理论对钻柱的失效进行研究得到了钻井液对钻柱的冲蚀磨损量以及最大冲蚀角度。根据算例参数设计了对应的室内实验,并将算例分析结果与实验结果进行对比,验证了本文所建的钻柱失效模型的正确性,结果表明考虑流固耦合钻井液对钻柱的冲蚀磨损量要远大于未考虑流固耦合钻井液对钻柱的冲蚀磨损量;层流状态下钻井液引起钻柱失效所发生的最大冲蚀角与钻井液和钻柱之间是否进行流固耦合无关。工程应用实例表明,本文研究结果可以较好地指导钻井作业实践,对于减少钻柱失效和降低钻井成本具有一定的参考意义。
On the basis of the analysis of the influencing factors in the fluid / structure interaction,a model of drillstring failure was established. By solving the equations based on the fluid / structure interaction and drillstring vibration theories,the vibration frequency and velocity of drillstring were obtained,and effects of the fluid density,flow rate,flow stress,and the vibration frequency and velocity of the drillstring on the drillstring failure were analyzed. Moreover,the drillstring failure phenomenon was studied using erosion theory,resulting in the erosion masses and the maximum erosion angle. The corresponding laboratory experiment was designed according to the factors of numerical examples. The comparison between analysis results of numerical examples and the experimental results proves the model established in this paper to be correct. The results show that the erosion masses of drillstring considering the fluid / structure interaction are much greater than that without considering the interaction; under laminar flow,the maximum erosion angle had the same value whether the fluid / structure interaction was considered or not. Field application cases show that the conclusions of this study can guide the drilling operation and have certain theoretical reference significance for reducing the drillstring failure and lowering the cost of well drilling.
引文
[1]ASAMI T,MIURA H.Vibrator development for hole machining by ultrasonic longitudinal and torsional vibration[J].Japanese Journal of Applied Physics,2011,50(7):31-39.
    [2]田家林,付传红,杨琳,等.钻柱振动条件下的钻井液冲蚀引起的钻柱失效[J].科学技术与工程,2014,14(34):169-173.Tian Jialin,Fu Chuanhong,Yang Lin,et al.Drill string failure caused by drilling fluid erosion under the condition of drill string vibration[J].Science Technology and Engineering,2014,14(34):169-173.
    [3]邵冬冬,管志川,温欣,等.水平旋转钻柱横向振动特性实验[J].中国石油大学学报:自然科学版,2013,37(4):100-103.Shao Dongdong,Guan Zhichuan,Wen Xin,et al.Experiment on lateral vibration characteristics of horizontal rotary drilling string[J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(4):100-103.
    [4]程载斌,姜伟,蒋世全,等.全井钻柱系统耦合振动多体动力学模型的建立与算例分析[J].中国海上油气,2014,26(4):71-76.Cheng Zaibin,Jiang Wei,Jiang Shiquan,et al.A multibody dynamical model and example analysis of full hole drillstring for fully coupled vibrations[J].China Offshore Oil and Gas,2014,26(4):71-76.
    [5]王宇,樊洪海,张丽萍,等.高温高压气井测试管柱的横向振动与稳定性[J].石油机械,2011,39(1):36-38.Wang Yu,Fan Honghai,Zhang Liping,et al.The transverse vibration and stability of the high-temperature and high-pressure gaswell testing pipe string[J].China Petroleum Machinery,2011,39(1):36-38.
    [6]李怀科,王楠,田荣剑,等.深水条件下气制油合成基钻井液流变性和流变模型研究[J].中国海上油气,2012,22(6):406-408.Li Huaike,Wang Nan,Tian Rongjian,et al.Study on rheological property and model of GTL based drilling fluids under deepwater condition[J].China Offshore Oil and Gas,2012,22(6):406-408.
    [7]刘进田.下部钻柱振动分析及计算[J].石油矿场机械,2013,42(3):50-54.Liu Jintian.Vibration analysis and calculation for drilling stem[J].Oil Field Equipment,2013,42(3):50-54.
    [8]吴学敏,黄维平,滕文刚.深水顶张式立管参数振动与涡激振动耦合振动分析方法研究[J].中国海上油气,2014,26(4):100-105.Wu Xuemin,Huang Weiping,Teng Wengang.Study on analysis method for coupled vibration of parameter excited vibration and vortex-induced vibration on deep water top-tensed riser[J].China Offshore Oil and Gas,2014,26(4):100-105.
    [9]吴少博,程学亮,李治森.流体作用下钻柱运动状态试验研究[J].石油矿场机械,2012,41(1):37-41.Wu Shaobo,Cheng Xueliang,Li Zhisen.Experimental research on motion behavior of drill string under fluid action[J].Oil Field Equipment,2012,41(1):37-41.
    [10]BELYTSCHKO T.Fluid-structure interaction[J].Computers&Structures,1980,12(4):459-469.
    [11]丁天怀,李成.钻井液与钻柱的耦合纵向振动分析[J].机械工程学报,2007,43(9):215-219.Ding Tianhuai,Li Cheng.Analysis of coupling axial vibrations between drilling fluids and drillstring[J].Chinese Journal of Mechanical Engineering,2007,43(9):215-219.
    [12]李令东,程远方,周建良,等.深水钻井天然气水合物地层井壁稳定流固耦合数值模拟[J].中国海上油气,2012,24(5):40-45.Li Lingdong,Cheng Yuanfang,Zhou Jianliang,et al.Fluid-solid coupling numerical simulation on wellbore stability in gas-hydrate-bearing sediments during deep water drilling[J].China Offshore Oil and Gas,2012,24(5):40-45.
    [13]TAKIZAWA K,BRUMMER T,TEZDUYAR T E,et al.A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms[J].Journal of Applied Mechanics,2011,79(1):177-184.
    [14]居荣初.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.Ju Rongchu.Elastic structure and liquid coupling vibration theory[M].Beijing:Seismological Press,1983.
    [15]PAIDOUSSIS M P,ISSID N T.Dynamic stability of pipes conveying fluid[J].Journal of Sound and Vibration,1974,33(3):267-294.
    [16]FINNIE I,MCFADDEN D H.On the velocity dependence of the erosion of ductice metals by solid particles at low angles of incidence[J].Wear,1978,48(1):181-190.
    [17]马颖,任俊,李元东,等.冲蚀磨损研究的进展[J].兰州理工大学学报,2005,31(1):21-25.Ma Ying,Ren Jun,Li Yuandong,et al.Development of research on erosion of materials[J].Journal of Lanzhou University of Technology,2005,31(1):21-25.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心