高钛重矿渣钢筋砼柱偏心受压力学性能研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了研究高钛重矿渣混凝土柱在偏心受压状态下的极限承载力、刚度与普通混凝土柱的差异,对3根高钛重矿渣混凝土柱和3根普通混凝土柱进行偏心受压对比试验,并对试验过程进行有限元模拟。研究结果表明:高钛重矿渣混凝土柱与普通混凝土柱Nua/Nu0(Nua为极限承载力模拟值,Nu0为极限承载力试验值)的平均值分别为1.022、0.999,其均方差分别为0.009、0.027,采用文中有限元方法可较准确预测高钛重矿渣混凝土柱和普通混凝土柱的极限承载力;高钛重矿渣混凝土偏心受压柱荷载—侧向挠度曲线的刚度略低于普通混凝土偏心受压柱;可采用《混凝土结构设计规范》(GB 50010-2010)来计算高钛重矿渣钢筋混凝土偏压柱的承载力,其计算结果偏于安全。
Six columns,including 3 conventional steel-reinforced concrete( SRC) columns and 3SRC columns with high titanium and dry slag aggregate,were tested under eccentric compression,and the entire experiment process was simulated by the finite element method( FEM) for the purpose of investigating the differences of the ultimate bearing capacity and stiffness between the two kinds of columns. The test and simulation results indicate that the averages of Nua/ Nu0(Nuaand Nu0 are the ultimate bearing capacity calculated by FEM and obtained from the test,respectively) of the conventional SRC columns and the SRC columns with high titanium and dry slag aggregate are respectively 1. 022 and 0. 999; that the corresponding mean square deviations are respectively 0. 009 and 0. 027; that the FEM can accurately predict the ultimate bearing capacity of the both kinds of columns. The stiffness determined by the load-lateral-deflection curve of the RC columns with high titanium and dry slag aggregate is slightly smaller than that determined by the curve of the conventional RC columns. The Code for Design of Concrete Structure( GB 50010- 2010) is applicable for the optimal design of the RC columns with high titanium and dry slag aggregate,and the result is conservative.
引文
[1]汪杰,黄双华,汪军华,等.高钛重矿渣再生混凝土轴心抗压强度试验研究[J].山西建筑,2014,40(2):116-117.
    [2]李爱美,李兵,陈加耘.利用高钛重矿渣配制的C20混凝土耐久性研究[J].四川建筑,2008,28(3):208-209.
    [3]李爱美,李兵,陈加耘.高钛重矿渣集料的长期体积稳定性研究[J].建筑技术开发,2007,34(10):32-34.
    [4]罗述娟.高钛重矿渣混凝土自保温性能研究[D].成都:西华大学建筑与土木工程学院,2012.
    [5]孙金坤,陈伟,李英民,等.复高钛重矿渣混凝土与钢筋粘结性能试验研究[J].四川建筑科学研究,2010,36(4):216-219.
    [6]丁庆军,刘小清,管理,等.高钛重矿渣砂对混凝土自收缩与徐变影响及其机理研究[J].武汉理工大学学报,2014,36(1):29-33.
    [7]迟作进.用高炉重矿渣做骨料配制预拌混凝土的研究[J].辽宁科技学院学报,2012,14(1):36-37.
    [8]焦涛,陈伟,周建平.攀钢高炉富钛矿渣混凝土强度超声回弹综合检测分析[J].土工基础,2012,26(5):99-101.
    [9]陈梦成,刘京剑,黄宏.钢管再生矿渣混凝土轴压短柱试验研究[J].建筑结构学报,2013,34(S1):281-287.
    [10]焦涛,陈伟,李学伟.攀钢高炉半矿渣钢筋混凝土柱的低周反复荷载试验[J].工程抗震与加固改造,2013,35(2):75-79.
    [11]焦涛,李小伟,陈伟,等.全高炉矿渣钢筋混凝土柱的延性试验[J].混凝土与水泥制品,2013(2):60-63.
    [12]李小伟,陈伟,李学伟.高钛重渣骨料高强混凝土柱抗震性能试验研究[J].建筑结构,2013,43(9):96-100.
    [13]李小伟,陈伟,李学伟.高钛重渣砂HRC柱抗震性能试验研究[J].世界地震工程,2013,29(2):39-45.
    [14]管理,曾仁高,牟廷敏,等.高钛重矿渣钢筋砼轴压短柱的试验研究[C]//陆新征.第22届全国结构工程学术会议论文集第Ⅱ册.北京:工程力学杂志社,2013:29-32.
    [15]管理,龙建文,牟廷敏,等.高钛重矿渣钢筋混凝土纯弯构件试验研究[C]//陆新征.第22届全国结构工程学术会议论文集第Ⅱ册.北京:工程力学杂志社,2013:78-82.
    [16]ESMAEILY A,XIAO Y.Behavior of reinforced concrete columns under variable axial loads:analysis[J].ACI Structural Journal,2005,102(5):736-744.
    [17]SCOTT B D,PARK R,PRIESTLEY M J N.Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J].ACI Structural Journal,1982,79(2):13-27.
    [18]周万清,蔡健,林奕禧,等.纵横向荷载作用下PHC管桩的有限元分析[J].广西大学学报:自然科学版,2011,36(1):187-193.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心