硬厚岩层下逆断层采动应力演化与断层活化特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
上覆硬厚岩层受逆断层切割后,工作面顶板运动、采动应力会有异常变化。采用三维数值计算方法,模拟分析了上、下盘工作面向逆断层推进过程中的采动应力演化特征、煤层顶板运动特征及断层活化规律,并采用工程实例进行了分析验证。研究表明:在逆断层切割作用下,上盘工作面围岩呈倒楔形,采动应力向底板深处、顶板高处转移,围岩应力集中程度大于下盘工作面。下盘工作面与上盘工作面相比,采动应力受工作面与断层距离的影响较大。巨厚岩浆岩及其下部岩层形成类似"杠杆"结构,造成煤层顶板的下沉和反弹。逆断层下盘工作面煤层直接顶断层带活化的可能性大于上盘工作面,高位岩浆岩断层带活化的可能性小于下盘工作面。下盘工作面与逆断层距离40 m时断层开始活化;上盘工作面与逆断层距离40 m时,煤层直接顶断层带开始活化,与逆断层距离30 m时高位岩浆岩断层带开始活化。
There will be changes in roof movement and mining stress after overlying hard-thick strata cut by reverse fault. By using three-dimensional numerical calculation method,this paper analyzed the characteristics of mining stress evolution,roof movement and fault activation rule,and also used the engineering example to verify it. Study results show that under the effect of reverse fault cutting,the surrounding rock of hanging wall working face appears as inverted wedge,the mining stress transfers to deep below the floor and high above the roof,and the surrounding rock stress concentration is greater than that at lower face. Compared with the hanging wall working face,the mining stress of footwall working face is greatly influenced by the distance between working face and fault. The magmata rock and its lower strata form the structure similar to ‘leverage',which causes the subsidence and rebound of coal seam roof. The possibility of immediate roof fault zone activation of reverse fault at footwall working face is greater than that at hanging wall working face,while the possibility of the high position magmata fault zone activation is less than that at footwall working face. The fault starts the activation when the distance between footwall working face and reverse fault is 40 m. When the distance between hanging wall working face and reverse fault is 40 m,the immediate roof fault zone start activation,while the high magmata rock fault zone starts activation when the distance is 30 m.
引文
[1]熊祖强,贺怀建.冲击地压应力状态及卸压治理数值模拟[J].采矿与安全工程学报,2006,23(4):489-493.Xiong Zuqiang,He Huaijian.Numerical simulation of rock burst stressand its control by stress-relief[J].Journal of Mining&Safety Engineering,2006,23(4):489-493.
    [2]王振,尹光志,胡千庭,等.高瓦斯煤层冲击地压与突出的诱发转化条件研究[J].采矿与安全工程学报,2010,27(4):572-575.Wang Zhen,Yin Guangzhi,Hu Qianting,et al.Inducing and transforming conditions from rockburst to coal-gas outburst in a high gassy coal seam[J].Journal of Mining&Safety Engineering,2010,27(4):572-575.
    [3]蒋金泉.采场围岩应力与运动[M].北京:煤炭工业出版社,1993.
    [4]潘一山,王来贵,章梦涛,等.断层冲击地压发生的理论与试验研究[J].岩石力学与工程学报,1998,17(6):642-649.Pan Yishan,Wang Laigui,Zhang Mengtao,et al.Theory and experimental study on faults rock burst[J].Chinese Journal of Rock Mechanics and Engineering,1998,17(6):642-649.
    [5]宋义敏,马少鹏,杨小彬,等.断层冲击地压失稳瞬态过程的试验研究[J].岩石力学与工程学报,2011,30(4):812-817.Song Yimin,Ma Shaopeng,Yang Xiaobin,et al.Experimental investigation on instability transient process of fault rock burst[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(4):812-817.
    [6]王学滨,潘一山,海龙.基于剪切应变梯度塑性理论的断层岩爆失稳判据[J].岩石力学与工程学报,2004,23(4):588-591.Wang Xuebin,Pan Yishan,Hai Long.Instability criterion of fault rock burst based on gradient-dependent plasticity[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(4):588-591.
    [7]林远东,涂敏,刘文震,等.基于梯度塑性理论的断层活化机理[J].煤炭学报,2012,37(12):2060-2064.Lin Yuandong,Tu Min,Liu Wenzhen,et al.Faults activation mechanism based on gradient-dependent plasticity[J].Journal of China Coal Society,2012,37(12):2060-2064.
    [8]于广明,谢和平,杨伦,等.采动断层活化分形界面效应的数值模拟研究[J].煤炭学报,1998,23(4):396-400.Yu Guangming,Xie Heping,Yang Lun,et al.Numerical simulation of fractal effect induced by activation of fault after coal extraction[J].Journal of China Coal Society,1998,23(4):396-400.
    [9]Alber M,Fritschen R,Bischoff M,et al.Rock mechanical investigations of seismic events in a deep longwall coal mine[J].International Journal of Rock Mechanics&Mining Sciences,2009,46(2):408-420.
    [10]Hofmann G F,Scheepers L J.Simulating fault slip areas of mining induced seismic tremors using static boundary element numerical modelling[J].Mining Technology,2011,120(1):53-64.
    [11]罗浩,李忠华,王爱文,等.深部开采临近断层应力场演化规律研究[J].煤炭学报,2014,39(2):322-327.Luo Hao,Li Zhonghua,Wang Aiwen,et al.Study on theevolution law of stress field when approaching fault in deep mining[J].Journal of China Coal Society,2014,39(2):322-327.
    [12]宋振骐,郝建,汤建泉,等.断层突水预测控制理论研究[J].煤炭学报,2013,38(9):1511-1515.Song Zhenqi,Hao Jian,Tang Jianquan,et al.Study on water inrush from fault’s prevention and control theory[J].Journal of China Coal Society,2013,38(9):1511-1515.
    [13]李振雷,窦林名,蔡武,等.深部厚煤层断层煤柱型冲击矿压机制研究[J].岩石力学与工程学报,2013,32(2):333-342.Li Zhenlei,Dou Linming,Cai Wu,et al.Fault-pillar induced rock burst mechanism of thick coal seam in deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(2):333-342.
    [14]潘岳,解金玉,顾善发.非均匀围压下矿井断层冲击地压的突变理论分析[J].岩石力学与工程学报,2001,20(3):310-314.Pan Yue,Xie Jinyu,Gu Shanfa.Theoretical analysis of mutation of faults rock burst under non-uniform confining pressure[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(3):310-314.
    [15]王学滨,赵杨峰,张智慧,等.考虑应变率及应变梯度效应的断层岩爆分析[J].岩石力学与工程学报,2003,22(11):1859-1862.Wang Xuebin,Zhao Yangfeng,Zhang Zhihui,et al.Analysis on fault rockburst considering strain rate and strain gradient[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1859-1862.
    [16]潘立友,张立俊,刘先贵.冲击地压预测与防治实用技术[M].徐州:中国矿业大学出版社,2006.
    [17]段伟,邹德蕴,胡英俊.冲击地压应力监测预报系统的研制与应用[J].采矿与安全工程学报,2008,25(1):78-81.Duan Wei,Zou Deyun,Hu Yingjun.Development and application of rock burst forecast information system[J].Journal of Mining&Safety Engineering,2008,25(1):78-81.
    [18]姜耀东,吕玉凯,赵毅鑫,等.综采工作面过断层巷道稳定性多参量监测[J].煤炭学报,2011,36(10):1601-1606.Jiang Yaodong,LüYukai,Zhao Yixin,et al.Gao Zhanxue.Multiparameter monitoring the stability of rock around roadway while fully mechanized coal face passing through fault[J].Journal of China Coal Society,2011,36(10):1601-1606.
    [19]姜福兴,苗小虎,王存文,等.构造控制型冲击地压的微地震监测预警研究与实践[J].煤炭学报,2010,35(6):900-903.Jiang Fuxing,Miao Xiaohu,Wang Cunwen,et al.Predicting research and practice of tectonic-controlled coal burst by microseismic monitoring[J].Journal of China Coal Society,2010,35(6):900-903.
    [20]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [21]姜耀东,王涛,赵毅鑫,等.采动影响下断层活化规律的数值模拟研究[J].中国矿业大学学报,2013,42(1):1-5.Jiang Yaodong,Wang Tao,Zhao Yixin,et al.Numerical simulation of fault activation pattern induced by coal extraction[J].Journal of China University of Mining&Technology,2013,42(1):1-5.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心