高地应力定义及其定性定量判据
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地应力大小是地下工程设计的基本参数,直接影响工程岩体的力学行为。与高地应力相关的工程问题自20世纪80年代开始受到关注,但迄今未见高地应力的明确定义。国内曾先后提出多种地应力分级方案,但分级结果与工程岩体的实际行为存在一定差距,部分预测为高地应力的工程未出现高地应力现象(如官地地下厂房),而预测为低地应力的工程(如二滩地下厂房)却出现严重的岩爆等高地应力现象。针对此问题,在国内常用地应力分级方案基础上,讨论了影响地应力分级的主要因素,将高地应力划分为初始高地应力与诱发高地应力两类。诱发高地应力是洞室群效应产生的高二次应力与爆破开挖动力扰动单独或联合作用的结果;给出了高地应力的明确定义,即量值足以导致结构体或岩块破坏的地应力,并在前人研究成果的基础上提出了定性判据;重新定义强度应力比为岩石干燥单轴抗压强度与实测最大主应力之比,建议了新的地应力分级方案(定量判据)。25个工程实例证明,建议方案的吻合率远高于国内常用地应力分级方案。建议方案的级差大致与CD Martin等1999年的建议方案相当。
The magnitude of initial geostress is one of the key parameters for designing underground structures and can directly influence the mechanical behavior of engineered rock masses. Although attention has been paid to the engineering problems related to high geostresses since 1980 s, no clear definition is ever made thus far. In China, several rating schemes have been proposed for defining initial geostresses, but the rockmass behaviors inferred from such schemes differ more or less from the real ones. For example, no obvious high geostress characteristics were ever witnessed in some predicted high-geostress engineering sites(e.g. Guandi underground powerhouse), whereas heavy rockbursts could happen in the sites supposed to have low geostress(say, Ertan underground powerhouse site). To resolve this issue, the rating schemes for initial geostress commonly practiced in China is briefly introduced first; then the major factors affecting the geostress rating are discussed; finally high geostress is classified into two categories, i.e. the initial high geostress and the induced high geostress. The induced high geostress is a combined result of the high secondary stress concentration due to cavern groups and the dynamic disturbance due to blasting excavations. The criterion defining high geostress is clearly specified, which is the threshold of geostress that can induce failure of the embedded structure or the rockmass, and a qualitative criterion is also summarized based on the previous research results. The ratio of strength to stress is redefined as the uniaxial compressive strength of dry intact rock to the measured maximum principal stress, and a new initial geostress rating scheme(quantitative criterion) is suggested. The suggested scheme is validated using the monitoring data of 25 engineering cases, showing that the accuracy of the suggested scheme is much better than the commonly used rating schemes in China. The suggested scheme is similar to that proposed by CD Martin et al. in 1999.
引文
[1]中华人民共和国国家标准.GB50021-94岩土工程勘察规范[S].北京:中国建筑工业出版社,1995.
    [2]徐林生,唐伯明,慕长春,等.高地应力与岩爆有关问题的研究现状[J].公路交通技术,2002,(4):48-51.XU Lin-sheng,TANG Bo-ming,MU Chang-chun,et al.Study on influence of soil parameters on lateral response of pile foundations[J].Technology of Highway and Transport,2002,(4):48-51.
    [3]王成虎,郭放良,丁立丰,等.工程区高地应力判据研究及实例分析[J].岩土力学,2009,30(8):2359-2364.WANG Cheng-hu,GUO Fang-liang,DING Li-feng,et al.High in-situ stress criteria for engineering area and a case analysis[J].Rock and Soil Mechanics,2009,30(8):2359-2364.
    [4]邓建辉,陈菲,魏进兵,等.略论国内外地应力分级方案的适用性[C]//流域水电开发重大技术问题及主要进展——雅砻江虚拟研究中心2014年度学术年会论文集.郑州:黄河水利出版社,2014.
    [5]薛玺成,郭怀志,马启超.岩体高地应力及其分析[J].水利学报,1987,(3):52-58.XUE Xi-cheng,GUO Huai-zhi,MA Qi-chao.High geo-stress in rock mass and its analysis[J].Journal of Hydraulic Engineering,1987,(3):52-58.
    [6]中华人民共和国国家标准.GB50487-2008水利水电工程地质勘察规范[S].北京:中国计划出版社,2009.
    [7]中华人民共和国电力行业标准.DL/T5415-2009水电水利工程地下建筑物工程地质勘查技术规程[S].北京:中国电力出版社,2009.
    [8]中华人民共和国国家标准.GB50218-94工程岩体分级标准[S].北京:中国计划出版社,1995:78.
    [9]中华人民共和国行业标准.TB10012-2007,J24-2007铁路工程地质勘察规范[S].北京:中国铁道出版社,2007:272.
    [10]中华人民共和国国家标准.GB50021-2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2009:316.
    [11]中华人民共和国国家标准.GB/T50266-2013工程岩体试验方法标准[S].北京:中国计划出版社,2013:121.
    [12]中华人民共和国行业标准.DL/T5368-2007水电水利工程岩石试验规程[S].北京:中国水利水电出版社,2007:215.
    [13]International Society for Rock Mechanics Commission on Testing Methods.Suggested methods for determining the uniaxial compressive strength and deformability of rock materials[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1979,16(2):135-140.
    [14]白世伟,李光煜.二滩水电站坝区岩体地应力场研究[J].岩石力学与工程学报,1982,1(1):45-56.BAI Shi-wei,LI Guang-yu.Research on stress field around dam area of Ertan hydropower station[J].Chinese Journal of Rock Mechanics and Engineering,1982,1(1):45-56.
    [15]张强勇,陈旭光,林波,等.深部巷道围岩分区破裂三维地质力学模型试验研究[J].岩石力学与工程学报,2009,28(9):1757-1766.ZHANG Qiang-yong,CHEN Xu-guang,LIN Bo,et al.Study of 3D geomechanical model test of zonal disintegration of surrounding rock of deep tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1757-1766.
    [16]READ R S,CHANDLER N A,DZIK E J.In situ strength criteria for tunnel design in highly-stressed rock masses[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(3):261-278
    [17]KAISER P K,DIEDERICHS M S,MARTIN C D,et al.Keynote:underground works in hard rock tunneling and mining[C]//An International Conference on Geotechnical and Geological Engineering,Melbourne,Vol.1:Invited Papers.Lancaster:Technomic Publishing Co.,Inc.,2000:841-926.
    [18]卢文波,周创兵,陈明,等.开挖卸荷的瞬态特性研究[J].岩石力学与工程学报,2008,27(11):2184-2191.LU Wen-bo,ZHOU Chuang-bing,CHEN Ming,et al.Research on transient characteristics of excavation unloading[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(11):2184-2191.
    [19]丁恩保.低地应力及其工程地质意义[J].水文地质工程地质,1993,(4):1-4.DING En-bao.Low geo-stress and its engineering geology significances[J].Hydrogeology and Engineering Geology,1993,(4):1-4.
    [20]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [21]ORTLEPP W D.Rock fracture and rockbursts—an illustrative study[M].Johannesburg:SAIMM Monograph Series M9,1997.
    [22]CAI M,KAISER P K,TASAKAB Y,et al.Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J].International Journal of Rock Mechanics&Mining Sciences,2004,41:833-847.
    [23]钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报,2004,27(1):1-5.QIAN Qi-hu.The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness[J].Journal of East China Institute of Technology,2004,27(1):1-5.
    [24]ORTLEPP,W D.Observation of mining-induced faults in an intact rock mass at depth[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):423-436.
    [25]孙广忠,黄运飞.高边墙地下洞室洞壁围岩板裂化实例及其力学分析[J].岩石力学与工程学报,1988,7(1):15-24.SUN Guang-zhong,HUANG Yun-fei.An example of slab-rending in the surrounding rock of underground excavation with high walls and its mechanical analysis[J].Chinese Journal of Rock Mechanics and Engineering,1988,7(1):15-24.
    [26]孙宗远.二滩水电站地应力场的初步探讨[J].水力发电,1983,(9):30-34,51.SUN Zong-yuan.Preliminary investigation on the geo-stress field in Ertan hydropower station[J].Water Power,1983,(9):30-34,51.
    [27]薛玺成,刘世煌.几个大型地下电站的应力场回归分析[J].水力发电学报,1987,(3):74-82.XUE Xi-cheng,LIU Shi-huang.The regression analysis of the stress field of rock masses in the regions of several large underground power stations[J].Journal of Hydroelectric Engineering,1987,(3):74-82.
    [28]刘克远.二滩水电站枢纽区岩体抗剪强度参数的选取[J].水电站设计,1986,(1):9-21.LIU Ke-yuan.Selection of shear strength parameters of the rock masses in Ertan hydropower station[J].Design of Hydroelectric Power Station,1986,(1):9-21.
    [29]李杰,程志华,傅其义,等.二滩水电站地下厂房设计[J].水力发电,1997,(8):31-34.LI Jie,CHENG Zhi-hua,FU Qi-yi,et al.Design of Ertan underground powerhouse[J].Water Power,1997,(8):31-34.
    [30]彭加寿.二滩水电站地下工程岩爆及其防护[J].水力发电,1998,(7):39-40.PENG Jia-shou.Rockburst and its control in Ertan underground powerhouse[J].Water Power,1998,(7):39-40.
    [31]彭仕雄,陈卫东,杨建.官地水电站关键工程地质技术问题研究与实践[M].北京:中国水利水电出版社,2013.
    [32]姚显春,李宁,曲星,等.拉西瓦水电站地下厂房三维高地应力反演分析[J].岩土力学,2010,31(1):246-252.YAO Xian-chun,LI Ning,QU Xing,et al.Back analysis of three-dimensional initial geostress of Laxiwa underground powerhouse[J].Rock and Soil Mechanics,2010,31(1):246-252.
    [33]李宁,孙宏超,姚显春,等.地下厂房母线洞环向裂缝成因分析及处理措施研究[J].岩石力学与工程学报,2008,27(3):439-446.LI Ning,SUN Hong-chao,YAO Xian-chun,et al.Cause analysis of circumferential splits in surrounding rock of busbar tunnels in underground powerhouses and reinforced measures[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(3):439-446.
    [34]孙民伟,杜建中.小浪底工程地应力测试及其特征分析[J].长江科学院院报,1996,13(增刊):20-23.
    [35]杨法玉.引水发电建筑物设计-黄河小浪底水利枢纽规划设计丛书[M].北京:中国水利水电出版社、黄河水利出版社,2006.
    [36]薛玺成.鲁布革地下厂房区平面初始地应力场分析[J].岩土工程学报,1986,8(5):21-30.XUE Xi-cheng.The Planar Analysis of initial stress field within the area of Lubuge underground hydropower house[J].Chinese Journal of Geotechnical Engineering,1986,8(5):21-30.
    [37]赵广志.龙滩水电站左岸地下厂房地应力问题[J].中南水力发电,1998,(3):1-5.
    [38]MARTIN C D,KAISER P K,MCCREATH D R.Hoek–Brown parameters for predicting the depth of brittle failure around tunnels[J].Canadian Geotechnical Journal,1999,36:136-151.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心