大型液压离心振动台控制策略的仿真研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
离心振动台是一种先进的土工抗震试验设备,文中围绕其本身及复现信号的特殊性,仿真研究了离心振动台控制策略中的关键问题。首先在液压动力机构耦合线性模型的基础上,结合对离心振动台中四种非线性因素的建模,综合得到了原型样机液压动力机构的非线性耦合模型;其次,在简要回顾离心振动台伺服控制策略中各部分功能的基础上,研究了采用二阶带通滤波器作为顺馈控制器时系统动态特性的改善情况;最后,针对离心振动台复现信号具有"短时高频"的特点,研究了采用不同NFFT、误差修正系数时离线迭代算法的收敛精度和收敛速度。经仿真研究,当NFFT为512,α取0.5时,整个离线迭代过程最为理想,四次迭代后的收敛精度约为5%左右。
The centrifuge shaker is considered as one of the advanced equipments in the geotechnical anti-earthquake field.The control strategy of centrifuge shaker is numerically simulated in this paper,which mainly focuses on the particularity of centrifuge shaker systems and the feature of their reference signals.A non-linear coupling model of the hydraulic actuator unit is firstly established for the experimental prototype of centrifuge shaker by integrating four non-linear factors into the previous presented linear coupling model.Then,the function of every component of the centrifuge shaker's servo control strategy is briefly introduced.Especially,the performance improvement of the system with feedforward compensation is comprehensively examined when we introduce a band pass filter as the feedforward controller.With consideration of the reference signal's particular feature(short duration and high frequency),the convergence precision and convergence speed of the off-line iteration algorithm are finally evaluated for different NFFT and different error correction coefficients.After the whole numerical simulation,we conclude that the whole off-line iteration process is optimal when NFFT=512and,α=0.5,and the convergence precision is reduced to 5% after the fourth iteration.
引文
[1]张建民,于玉贞,濮家骝,等.电液伺服控制离心机振动台系统研制[J].岩土工程学报,2004,26(6):843—845.ZHANG Jian-min,YU Yu-zhen,PU Jia-liu,et al.Development of a shaking table in electro-hydraulic servo-control centrifuge[J].Chinese Journal of Geotechnical Engineering,2004,26(6):843—845.
    [2]王永志.振动离心机系统工作原理与初步设计[D].哈尔滨:中国地震局工程力学研究所,2010.WANG Yong-zhi.Working principle and preliminary design of a centrifugal shaker system[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2010.
    [3]Daniel W Wilson,Ross W Boulanger,Xin Feng,et al.The NEES geotechnical centrifuge at UC DAVIS[A].13th World Conference on Earthquake Engineering[C].Vancouver:Prentice-Hall,2004.
    [4]He Y B,Chua P S K,Lim G H.Performance analysis of a two-stage electrohydraulic servovalve in centrifugal force field[J].Journal of Fluids Engineering,2003,125:166—170.
    [5]罗中宝,杨志东,丛大成,等.大型液压离心振动台的耦合特性分析[J].振动与冲击,2014,33(11):17—25.LUO Zhong-bao,YANG Zhi-dong,CONG Da-cheng,et al.The coupling characteristic analysis of large hydraulic centrifugal shaker[J].Journal of Vibration and Shock,2014,33(11):17—25.
    [6]Stephen A K,Hanover N H.Performance of an earthquake motion simulator for a small geotechnical centrifuge[A].Centrifuge 91[C].Balkema:Rotterdam,1991:361—368.
    [7]Mason H B,Kutter B L,Bray J D,et al.Earthquake motion selection and calibration for use in geotechnical centrifuge[A].ICPMG 2010[C].Balkema:Rotterdam,2010.
    [8]Ketcham.Development of an earthquake motion simulator for centrifuge testing and the dynamic response of a model sand embankment[D].Boulder:University of Colorado,1989.
    [9]Dong-Soo Kim,Sei-Hyun Lee,Yun Wook Choo,et al.Self-balanced earthquake simulator on centrifuge and dynamic performance verification[J].KSCE Journal of Civil Engineering,2013,17(4):651—661.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心