流花11–1生物礁油田底水快速锥进研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
流花11–1生物礁油田是中国新近系目前发现的最大整装型生物礁油田,油田开发期间在不同构造部位的油井含水上升速度不同,前人已对油田含水地质因素进行分析,但对油田含水上升迅速的源头认识不足,严重制约了油田的采收。将层序地层学理论、碳酸盐岩成岩作用机理和构造运动相结合,平面上依靠高分辨率三维地震资料条件下利用叠前AVO反演的G属性所刻画的油水界面平面展布图,纵向上依靠叠前同步反演获得的vp/vS剖面图和密度转换的孔隙度剖面图,发现了多处底水刺穿油水界面形成的上窜通道,有力地论证了17.5 Ma和16.5 Ma层序界面附近暴露时产生的溶洞、溶缝及东沙运动产生的裂缝为流花11–1生物礁油田底水快速锥进的源头,其中溶洞为主要底水上窜通道。
Up to now,the bioherm oilfield of LH11–1 is the largest uncompartmentalized one in tertiary systems in China.In the developing period,the water cut in the different formations and structures is rising at various velocities. Although field water-composing geological factors were analyzed before,there is still lack of understanding and recognition on the sources of fast water-cut rise,which might severely restrict oil recovery. By the combination of sequence stratigraphy,carbonate rock diagenesis mechanism and tectonic movement,horizontally referring to the oil-water interface planar layouts featured by G attributes of AVO pre-stack inversion under the condition of high resolution 3-D seismic data,and vertically considering the vp/vSobtained through pre-stack simultaneous inversion and the porosity profile of density conversion,the authors find the ascending channels formed by multiple bottom-water piercing oil-water interface,convincingly verifying that the Karst caves and seams created when the nearby areas surrounding the sequence interfaces between 17.5Ma and 16.5Ma get exposed,and the fractures formed by Dongsa movement are the three sources for Fast Coning of Bottom Water in the bioherm Oilfield of LH11–1. Among them,the Karst caves are the major ascending channels.
引文
[1]龚再生.中国近海大油气田[M].北京:石油工业出版社,2006.
    [2]Robert G Loucks,J Frederick Sang.碳酸盐岩层序地层学近期进展及应用[M].马永生,刘波,梅冥相,等译.北京:海洋出版社,2003.
    [3]秦川,刘树根,张长俊,等.四川盆地中南部雷口坡组碳酸盐岩成岩作用与孔隙演化[J].成都理工大学学报:自然科学版,2009,36(3):276–281.Qin Chuan,Liu Shugen,Zhang Changjun,et al.Diagenesis and porosity evolution of carbonate rocks of the Middle Triassic Leikoupo Formation in the south-central part of Sichuan Basin,China[J].Journal of Chengdu University of Technology:Science&Technology Edition,2009,36(3):276–281.
    [4]杨宁,吕修祥,陈梅涛.塔里木盆地塔河油田奥陶系碳酸盐岩油气成藏特征[J].西安石油大学学报:自然科学版,2008,23(3):1–5.Yang Ning,Lu¨Xiuxiang,Chen Meitao.Study on the hydrocarbon reservoir forming characteristics of the Ordovician carbonate rock in Tahe Oilfield,Tarim Basin[J].Journal of Xi′an Shiyou University:Natural Science Edition,2008,23(3):1–5.
    [5]《勘探地球物理学进展文集》编写组.勘探地球物理学进展文集[M].北京:石油工业出版社,2008.
    [6]Riding R.Structure and composition of organic reefs and carbonate mud mounds:concepts and categories[J].EarthScience Reviews,2002,58(1):163–231.
    [7]王国忠.南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用[J].古地理学报,2004,3(2):47–54.Wang Guozhong.Mixed sedimentation of recent reefoid carbonates and terrigenous clastics in the north continental shelf of the South China Sea[J].Journal of Palaeogeography,2004,3(2):47–54.
    [8]陈长民,施和笙,许世策,等.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社,2003.
    [9]赵敏,侯朝晖,刘莉.缝洞型碳酸盐岩油藏致密隔层分布研究[J].新疆石油地质,2010,31(4):379–381.Zhao Min,Hou Chaohui,Liu Li.Dense limestone barrier distribution of fractured-vuggy carbonate reservoirs[J].Xinjiang Petroleum Geology,2010,31(4):379–381.
    [10]刘克奇,蔡忠贤,张淑贞,等.塔中地区奥陶系碳酸盐岩不整合带的结构[J].地球科学与环境学报,2006,28(2):41–44.Liu Keqi,Cai Zhongxian,Zhang Shuzhen,et al.Structure of Ordovician carbonate unconformity zone in Tazhong Area[J].Journal of Earth Sciences and Environment,2006,28(2):41–44.
    [11]胡诚,郑荣才,戴朝成.珠江口盆地珠江组流花生物礁及储层特征[J].岩性油气藏,2010,22(3):59–64.Hu Cheng,Zheng Rongcai,Dai Chaocheng.Liuhua organic reef and reservoir characteristics of Zhujiang Formation in Pearl River Mouth Basin[J].Lithologic Reservoirs,2010,22(3):59–64.
    [12]孙启良,马玉波,赵强,等.南海北部生物礁碳酸盐岩成岩作用差异及其影响因素研究[J].天然气地球科学,2008,19(5):665–672.Sun Qiliang,Ma Yubo,Zhao Qiang,et al.Different reef carbonate diagenesis and its influential factors,Northern South China Sea[J].Natural Gas Geoscience,2008,19(5):665–672.
    [13]卫平生,张虎权,王宏斌,等.塔中地区缝洞型碳酸盐岩储层的地球物理预测方法[J].天然气工业,2009,29(3):38–40.Wei Pingsheng,Zhang Huquan,Wang Hongbin,et al.Geophysical prediction methods on fractured-vuggy carbonate reservoirs in Tazhong area[J].Natural Gas Industry,2009,29(3):38–40.
    [14]贺振华,黄德济,文晓涛,等.裂缝油气藏地球物理预测[M].成都:四川科学技术出版社,2007.
    [15]Keys R G,Xu S.An approximation for the Xu-White velocity model[J].Geophysics,2002,67(5):1406–1414.
    [16]Buland A,Omre H.Bayesian linearized AVO inversion[J].Geophysics,2003,68(1):185–198.
    [17]Russell B H,Gray D,Hampson D P.Linearized AVO and poroelasticity[J].Geophysics,2011,76(3):C19–C29.
    [18]赵皓,冯全雄,黄兆林,等.基于吸收滤波与AVO技术的地震烃类检测技术[J].天然气工业,2007,27(10):46–48.Zhao Hao,Feng Quanxiong,Huang Zhaolin,et al.The hydrocarbon detection technique based on absorption filtering and AVO method[J].Natural Gas Industry,2007,27(10):46–48.
    [19]梁立峰,冯全雄,万欢,等.AVO流体反演技术在惠州某区的应用[J].工程地球物理学报,2010,7(5):548–553.Liang Lifeng,Feng Quanxiong,Wan Huan,et al.Application of AVO fluid inversion technology in an Area of Huizhou[J].Chinese Journal of Engineering Geophysics,2010,7(5):548–553.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心