板厚对板-柱结构抗震性能的影响分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的研究板厚对板-柱结构抗震性能的影响,为推广板-柱结构在抗震区的应用提供依据.方法采用三维实体建模,对板厚从190~240 mm(跨厚比30~40)的板-柱结构进行了有限元分析.结果得到了板-柱结构的基底剪力-顶点侧移关系曲线及Pushover分析结果曲线,分析了塑性铰出铰情况,并将加载过程分为4个阶段,对比了各加载阶段结构的响应,给出了对应于7度多遇及罕遇地震作用下的结构侧移和层间位移角.结论当板厚从190 mm增大到240 mm时,板-柱结构的抗侧刚度随之增大,板厚每增加10 mm结构的抗侧刚度增大约5%;等代梁刚度随板厚的增加而增大,虽然板-柱结构在形成出铰机制时出现梁铰数量略减而柱铰数量略增的现象,但整体仍以梁铰为主;在7度多遇、罕遇地震作用下,跨厚比在30~40且经过合理设计的板-柱结构的最大层间位移角均能满足抗震规范的要求.
The purpose of this paper is to study the influence of slab thickness on seismic behavior of slab-column structures and to provide a basis for extending applications of slab-column structures in seismic regions. Based on the method of 3D solid modeling,finite element analysis was employed for slab-column structures with slab thicknesses ranged from 190 mm to 240mm( span to depth ratios ranged from 30 to 40). Curves of base shear-peak displacements of slab-column structures and Pushover analysis results were obtained and hinges appearance situation of plastic hinges was analyzed. The loading process was divided into four stages; the response of structure in each stage was compared; and the structural lateral displacements and story drift angles under the actions of frequent and rare earthquakes with 7 degrees were given. It is found that with the increase of slab thickness from 190 mm to 240 mm,the lateral stiffness of slab-column structure is increased a-bout 5% per incrcase 10 mm of slab thickness; the stiffness of equivalent beam is also increased.When the hinge appearance mechanism is formed,the number of beam hinges are decreased and the column hinges are increased slightly; while the slab-column structure still dominated by beam hinge mechanism. Under frequent and rare earthquakes with 7 degrees,the all maximum story drift angles of reasonably designed slab-column structures with span to depth ratios ranged from 30 to40 can meet requirements of the seismic code.
引文
[1]龚模松,陆兢.上反柱帽的无梁楼盖设计[J].工业建筑,2011(41):233-235.(Gong Mosong,Lu Jing.The flat slab design w ith anti-cap of column[J].Industrial Construction,2011(41):233-235.)
    [2]郭楠,郑文忠.板-柱结构设计相关问题[J].哈尔滨工业大学学报,2007,39(8):1206-1210.(Guo Nan,Zheng Wenzhong.Correlative problems in design of plate-column structures[J].Journal of Harbin Institute of Technology,2007,39(8):1206-1210.)
    [3]吴强,程文瀼.板柱结构中柱节点抗震性能的试验研究[J].地震工程与工程震动,2006,26(4):83-89.(Wu Qiang,Cheng Wenrang.Experimental study on seismic performance of interior connections of flat plate structures[J].Earthquake Engineering and Engineering Vibration,2006,26(4):83-89.)
    [4]郭楠,朱金,杨颖伟.剪力墙布置对板柱-剪力墙结构扭转效应的影响[J].江苏科技大学学报:自然科学版,2013,27(3):224-228.(Guo Nan,Zhu Jin,Yang Yingwei.Influence on torsion response of the shear w alls arranged in slab-column and shearw all structure[J].Journal of Jiangsu University of Science and Technology:Natural Science Edition,2013,27(3):224-228.
    [5]郭楠,郭轶宏,杨颖伟.板柱-剪力墙结构适用高度研究[J].沈阳建筑大学学报:自然科学版,2011,27(1):79-83.(Guo Nan,Guo Yihong,Yang Yingwei.Study of suitable height of slab-column and shearw all structure[J].Journal of Shenyang Jianzhu University:Natural Science,2011,27(1):79-83.)
    [6]董欣.板柱-剪力墙结构的地震反应分析[D].南京:南京航空航天大学,2007:33-49.(Dong Xin.Seismic response analysis of slab column-shear w all structures[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2007:33-49.)
    [7]Huang W,Gould P L.3-D Pushover analysis of a collapsed reinforced concrete chimney[J].Finite Elements in Analysis and Design,2007,43(11/12):879-887.
    [8]戴亚鹏.板柱-抗震墙办公楼结构设计[J].山西建筑,2011(27):51-53.(Dai Yapeng.On structural design for slab-column and anti-seismic w all office buildings[J].Shanxi Architecture,2011(27):51-53.)
    [9]Guo Nan,Zhao Tingting,Lin Yiying.Study of suitability of out-of-codes tall slab-column and shearw all structure[J].Journal of Shenyang Jianzhu University:Natural Science,2012,28(6):1014-1022.
    [10]张卫东.板柱结构-基础-地基整体地震响应分析[J].武汉理工大学学报,2008,30(8):130-134.(Zhang Weidong.Seismic evaluation of whole dynamic response of slab-column structure-raft foundation-soil[J].Journal of Wuhan University of Technology,2008,30(8):130-134.)
    [11]尧国皇,王卫华,郭明.超高层钢框架-钢筋混凝土核心筒结构弹塑性时程分析[J].振动与冲击,2012,31(14):147-151.(Yao Guohuang,Wang Weihua,Guo Ming.Elastic-plastic time history analysis on super rise steel frame-core w all structure[J].Journal of Vibration and Shock,2012,31(14):147-151.)
    [12]吴强,艾军,陈少林,等.板柱-剪力墙结构抗震的弹塑性时程分析及失效模拟[J].振动与冲击,2007,26(11):95-98.(Wu Qiang,Ai Jun,Chen Shaolin,et al.Elastic-plastic time history analysis and failure simulation for seismic response of slab columnshear w all structures[J].Journal of Vibration and Shock,2007,26(11):95-98.)
    [13]Zheng Wenzhong,Ji Jing.Dynamic performance of angle-steel concrete columns under low cyc1ic loading-I:Experimental study[J].Earthquake Engineering and Engineering Vibration,2008,7(1):67-75.
    [14]王必刚.板柱结构静力弹塑性分析及试验研究[D].杭州:浙江大学,2007.(Wang Bigang.Nonlinear static analysis and test research on slab-column structure[D].Hangzhou:Zhejiang University,2007.)
    [15]Faleiro J,Oller S,Barbat A H.Plastic-damage seismic model for reinforced concrete frames[J].Computers and Structures,2008,86(7/8):581-597.
    [16]Peter G,Milan J.Damage-plastic model for concrete failure[J].International Journal of Solids and Structures,2006,43:7166-7196.
    [17]Voyiadjis G Z,Taqieddin Z N,Kattan P I.Anisotropic damage-plasticity model for concrete[J].International Journal of Plasticity,2008,24(10):1946-1965.
    [18]Jason L,Huerta A,Cabot G P,et al.An elastic plastic damage formulation for concrete:application to elementary tests and comparison w ith an isotropic damage model[J].Computer M ethods in Applied M echanics and Engineering,2006,195(52):7077-7092.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心