基于累积耗损能量的饱和粉土液化特性试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
饱和粉土场地在强地震作用下易发生液化现象。开展饱和粉土的循环三轴试验,以循环加载的累积耗损能量为指标,探讨黏粒含量、密实度、有效围压和循环应力比等因素对粉土液化特性的影响,试验结果表明:粉土液化所需的耗损能量随黏粒含量的增加呈先减小后增大的趋势,当黏粒含量约为8%时粉土的液化耗损能量最低;液化耗损能量随粉土密实程度的增大而逐渐增加,并随初始有效围压的增长而增加,但粉土的液化耗损能量与循环应力比之间的关系不明显。
Liquefaction of saturated silty soil can easily occur during strong earthquakes.To investigate the liquefaction of a saturated silt mixture,a series of cyclic triaxial tests is conducted.Some factors such as clay particle content,relative density,effective confining stress,and cyclic stress ratio are examined by analyzing the cumulative dissipated energy for triggering liquefaction.The results show that for low(high)values of clay particle content,an increase in clay particle content with the same relative density leads to a decrease(increase)in cumulative dissipated energy.The effective confining pressure and relative density have strong effects on the cumulative dissipated energy.However,the cumulative dissipated energy is independent of the cyclic stress ratio for the specimens with constant relative density and confining pressure.
引文
[1]黄博,陈云敏,殷建华,等.粉土和粉砂的动力特性试验研究[J].浙江大学学报:工学版,2002,36(2):143-147.HUANG Bo,CHEN Yun-min,YIN Jian-hua,et al.Laboratory Study on Dynamic Properties of Silt and Silty Sand[J].Journal of Zhejiang University:Engineering Science,2002,36(2):143-147.(in Chinese)
    [2]Appolonia D J,Appolonia E E,Brissette R F.Settlement of Spread Footings on Sand[J].Journal of Soil Mechanics&Foundations Div,1968,94(3):735-760.
    [3]周相国,邢贵发,苏玉国.天津地区饱和粉土地震液化的试验研究[J].岩土力学,2009,30(12):3813-3819.ZHOU Xiang-guo,XING Gui-fa,SU Yu-guo.Experimental Study of Earthquake Liquefaction of Saturated Silt in Tianjin Area[J].Rock and Soil Mechanics,2009,30(12):3813-3819.(in Chinese)
    [4]Nemat-Nasser S,Shokooh A.A Unified Approach to Densification and Liquefaction of Cohesionless Sand in Cyclic Shearing[J].Canadian Geotechnical Journal,1979,16(4):659-678.
    [5]Figueroa J L,Saada A S,Liang L,et al.Evaluation of Soil Liquefaction by Energy Principles[J].Journal of Geotechnical Engineering,1994,120(9):1554-1569.
    [6]Green R A.Energy-based Evaluation and Remediation of Liquefiable Soils[D].Blacksburg,Virginia:Viginia Polytechnic Institute and State University,2001.
    [7]Baziar M H,Jafarian Y.Assessment of Liquefaction Triggering Using Strain Energy Concept and ANN Model:Capacity Energy[J].Soil Dynamics and Earthquake Engineering,2007,27(12):1056-1072.
    [8]Park K,Kim S,Lee J,et al.Energy-based Evaluation of Excess Pore Pressure Using Damage Potential[J].International Journal of Offshore and Polar Engineering,2008,18(1).
    [9]Okur V,Ansal A.Evaluation of Cyclic Behavior of Fine-grained Soils Using the Energy Method[J].Journal of Earthquake Engineering,2011,15(4):601-619.
    [10]Baziar M H,Sharafi H.Assessment of Silty Sand Liquefaction Potential Using Hollow Torsional Tests-an Energy Approach[J].Soil Dynamics and Earthquake Engineering,2011,31(7):857-865.
    [11]Polito C P,Green R A,Dillon E,et al.Effect of Load Shape on Relationship Between Dissipated Energy and Residual Excess Pore Pressure Generation in Cyclic Triaxial Tests[J].Canadian Geotechnical Journal,2013,50(11):1118-1128.
    [12]Chen Y R,Chen J W,Hsieh S C,et al.Evaluation of Soil Liquefaction Potential Based on the Nonlinear Energy Dissipation Principles[J].Journal of Earthquake Engineering,2013,17(1):54-72.
    [13]Polito C P,Green R A,Lee J.Pore Pressure Generation Models for Sands and Silty Soils Subjected to Cyclic Loading[J].Journal of Geotechnical and Geoenvironmental Engineering,2008,134(10):1490-1500.
    [14]沈扬,闫俊,张朋举,等.主应力方向变化路径下等压固结粉土强度特性差异和能量评价方法研究[J].岩土力学,2011,32(4):531-536.SHEN Yang,YAN Jun,ZHANG Peng-ju,et al.Strength Characteristics of Isotropically Consolidated Silt Under Change of Principal Stress Orientation and Correlative Evaluation Method With Collapse Energy[J].Rock and Soil Mechanics,2011,32(4):531-536.(in Chinese)
    [15]陈国兴,朱定华,何启智.DSZ-1型动三轴试验机研制与性能试验[J].地震工程与工程振动,2002,22(6):71-74.CHEN Guo-xing,ZHU Ding-hua,HE Qi-zhi.Development and Test of DSZ-1 Cyclic Triaxial Testing System[J].Earthquake Engineering and Engineering Vibaration,2002,22(6):71-74.(in Chinese)
    [16]南京水利科学研究院.GBSL237-1999土工试验规程[S].北京:中国水利水电出版社,1999.
    [17]牛琪瑛,裘以惠,史美筠.粉土抗液化特性的试验研究[J].太原工业大学学报,1996,27(3):5-8.NIU Qi-ying,QIU Yi-hui,SHI Mei-yun.The Study and Test of Liquefaction Resistant Characteristics of Silt[J].Journal of Taiyuan University of Technology,1996,27(3):5-8.(in Chinese)
    [18]刘雪珠,陈国兴.粘粒含量对南京粉细砂液化影响的试验研究[J].地震工程与工程振动,2003,23(3):150-155.LIU Xue-zhu,CHEN Guo-xing.Experimental Study on Influence of Clay Particle Content on Liquefaction of Nanjing Fine Sand[J].Earthquake Engineering and Engineering Vibaration,2003,23(3):150-155.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心