预制混凝土剪力墙隔震结构振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究预制混凝土剪力墙(PCSW)隔震结构的抗震性能,设计了1个1/4缩尺结构模型,通过改变边界条件形成两种结构,分别为PCSW隔震结构及非隔震结构,并对其进行振动台试验。通过对结构动力特性和地震反应的对比分析,研究了PCSW隔震结构的减震效果和耗能特性。结果表明:高阻尼隔震支座具有较小的水平刚度,降低了PCSW隔震结构的自振频率;高阻尼隔震支座具有良好的耗能性能,提高了PCSW隔震结构的阻尼比;随着输入峰值加速度的变化,PCSW隔震结构的频率和阻尼比具有良好的稳定性;PCSW隔震结构的加速度、层间位移、基底剪力隔震效果明显;在输入峰值加速度400 gal时,顶层绝对加速度减震率达65%,顶层层间位移减小率达60%,基底剪力隔震率达48%;随着输入峰值加速度的增大,PCSW隔震结构的基底剪力隔震率呈增加趋势。
In order to investigate the seismic properties of precast concrete shear wall( PCSW) isolation structure,a1 /4 scale shaking table test was designed and conducted. The structure with high damping rubber bearings( HDRB)and that without HDRB were called PCSW isolation structure and non-isolation structure,respectively. The dynamic properties and structural responses of the two structures were compared. The experimental results indicate that the frequencies of PCSW isolation structure are less than those of the PCSW non-isolation structure due to the low lateral stiffness of the HDRB; the damping ratios of PCSW isolation structure are bigger than those of the PCSW non-isolation structure due to the high damping property of HDRB. With the increase of peak ground accelerations,the frequencies and damping ratios of the PCSW isolation structure change slightly,and the earthquake responses of PCSW isolation structure are less than those of the PCSW non-isolation structure. The control effect on acceleration,displacement,and shear force is remarkable. When peak ground acceleration is 400 gal,the top story absolute acceleration isolation ratio is 65%,the top story inter-story drift isolation ratio is 60%,and the base shear force isolation ratio is 48%. The base shear force isolation ratio increases nonlinearly along with the increase of peak ground acceleration.
引文
[1]Hubert B,Alfred S.Precast concrete structures[M].Berlin:Wiley-VCH,2011:2-13.
    [2]李爱群,王维,贾洪,等.预制钢筋混凝土剪力墙结构抗震性能研究进展:Ⅱ:结构性能研究[J].防灾减灾工程学报,2013,33(6):736-742.(LI Aiqun,WANG Wei,JIA Hong,et al.Progress of investigation on seismic behavior of precast concrete shear wall structures:Ⅱ:structure property study[J].Journal of Disaster Prevention and Mitigation Engineering,2013,33(6):736-742.(in Chinese))
    [3]Henry R S,Aaleti S,Sritharan S,et al.Concept and finite element modeling of new steel shear connectors for self centering wall systems[J].Journal of Engineering Mechanics,2010,136(2):220-229.
    [4]Kurama Y C.Unbonded post-tensioned precast concrete walls with supplemental viscous damping[J].ACI Structural Journal,2000,97(4):648-658.
    [5]Marriott D J,Pampanin S,Bull D,et al.Dynamic testing of precast post-tensioned rocking wall systems with alternative dissipating solutions[J].Bulletin of the New Zealand Society for Earthquake Engineering,2008,41(2):90-103.
    [6]Dall’Asta A,Ragni L.Experimental tests and analytical model of high damping rubber dissipating devices[J].Engineering Structures,2006,28(13):1874-1884.
    [7]袁涌,朱昆,熊世树,等.高阻尼橡胶隔震支座的力学性能及隔震效果研究[J].工程抗震与加固改造,2008,30(3):15-20.(YUAN Yong,ZHU Kun,XIONG Shishu,et al.Experimental study on characteristics and isolator effect of high-damping rubber bearing[J].Earthquake Resistant Engineering and Retrofitting,2008,30(3):15-20.(in Chinese))
    [8]Andrea D A,Laura R.Dynamic systems with high damping rubber:nonlinear behaviour and linear approximation[J].Earthquake Engineering&Structure Dynamic,2008,37(13):1511-1526.
    [9]Laura R,Luigino D,Andrea D A,et al.HDR devices for the seismic protection of frame structures:experimental results and numerical simulations[J].Earthquake Engineering&Structure Dynamic,2009,38(10):1199-1217.
    [10]周颖,吕西林.建筑结构振动台模型试验方法与技术[M].北京:科学出版社,2012:40-43.(ZHOU Ying,LU Xilin.Method and technology for shaking table model test of building structures[M].Beijing:Science Press,2012:40-43.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心