1000MW级核电站用喷淋泵泵壳安全性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
安全壳喷淋系统是保障核电站安全的关键设施,该系统中的喷淋泵更是核电站的核心安全设备.以一台核电站用安全壳喷淋泵为研究对象,对其进行安全特性方面的研究,以验证其设计是否满足抗震规范要求.首先,对泵壳结构体进行模态分析;其次,对其结构体加载运行基准地震载荷和安全停堆地震载荷,并进行基于模态响应下的地震动分析;最后,对泵壳内壁表面加载热变载荷,并对结构体进行热冲击计算.结构体安全性分析的结果表明:喷淋泵壳体的基频为104.45 Hz,远大于33 Hz,为刚性结构,结构体振动方式以水平方向运动为主.热冲击作用下产生的高热应力区域集中在泵座与壳体交界处;地震动作用下的地震动效应高应力区域集中在壳体上的结构分布不均匀处.无论是在热冲击还是地震动作用下,高形变区域均集中在泵底.泵壳结构体上出现的最大应力小于ASMEⅡ所确定的材料许用应力,满足抗震规范要求.
Containment spray system is an essential facility for nuclear power plant safety,and spray pump is the core safety equipment in it. In order to study the security of spray pump,and verify it satisfies the anti-seismic standards,a spray pump in 1 000 MW nuclear power plant was chosen as the research object. First,pump casing modal analysis was conducted; then the anti-seismic calculation at operating basis earthquake seismic load and safe shutdown earthquake seismic load was performed; finally thermal load was placed in the inner face of the pump,and thermal shock analysis was done. The results indicate that the fundamental frequency of the pump casing is 104. 45 Hz,far more than 33 Hz,and its structure is rigid. The vibration direction of the structure is mainly horizontal. High thermalstress is located at the junction of pump frame and hull,while high seismic stress is located on heterogeneous parts in pump casing. The thermal deformation and seismic deformation are both located at the bottom. The maximum stress is far less than the allowable stress specified by ASMEⅡ. The pump satisfies the anti-seismic relevant standards.
引文
[1]Birkhofer A.Seismic design of nuclear facilities in Germany[J].Nuclear Engineering and Design,1997,172(6):247-260.
    [2]Toshihiko Hirama,Masashi Goto,Hitoshi Kumagai.Seismic proof test of a reinforced concrete containment vessel(RCCV)part 3:Evaluation of seismic safety margin[J].Nuclear Engineering and Design,2007,237(12):1128-1139.
    [3]Kostarev V V,Petrenko A V,Vasilyev P S.An advanced seismic analysis of an NPP powerful turbogenerator on an isolation pedestal[J].Nuclear Engineering and Design,2007,237(12):1315-1324.
    [4]李永安.西安脉冲堆抗震设计计算[J].核动力工程,2002,23(6):12-15.Li Yongan.Seismic design calculation of Xi'an pulsed reactor[J].Nuclear Power Engineering,2002,23(6):12-15.(in Chinese)
    [5]付强,袁寿其,朱荣生,等.1 000 MW核电站SEC系统鼓型滤网抗震计算[J].核动力工程,2010,31(6):10-14.Fu Qiang,Yuan Shouqi,Zhu Rongsheng,et al.Antiseismic calculation of the drum filter in SEC system for1 000 MW nuclear power plants[J].Nuclear Power Engineering,2010,31(6):10-14.(in Chinese)
    [6]刘厚林,徐欢,王凯,等.基于流固耦合的余热排出泵转子模态分析[J].流体机械,2012,40(6):28-32.Liu Houlin,Xu Huan,Wang Kai,et al.Modal analysis for rotor of residual heat removal pump based on fluidstructure interaction[J].Fluid Machinery,2012,40(6):28-32.(in Chinese)
    [7]刘厚林,白羽,董亮,等.高温高压冶金用热水循环泵模态分析[J].江苏大学学报:自然科学版,2015,36(2):159-164.Liu Houlin,Bai Yu,Dong Liang,et al.Modal analysis of metallurgical hot water circulating pump at high temperature and pressure[J].Journal of Jiangsu University:Natural Science Edition,2015,36(2):159-164.(in Chinese)
    [8]付强,袁寿其,朱荣生,等.1 000 MW级核电站离心式上充泵转子轴系的扭矩特性[J].排灌机械工程学报,2013,31(5):394-400.Fu Qiang,Yuan Shouqi,Zhu Rongsheng,et al.Torsional vibration characteristics of rotor for 1 000 MW centrifugal charging pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013,31(5):394-400.(in Chinese)
    [9]刘松.核泵主轴机械-热耦合疲劳问题研究[D].大连:大连理工大学船舶工程学院,2012.
    [10]付强.1 000 MW核电站离心式上充泵水力设计与结构可靠性研究[D].镇江:江苏大学流体机械及工程技术研究中心,2010.
    [11]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [12]American Society of Mechanical Engineers.Boiler and Pressure Vessel Code,SectionⅡ:Materials:Part D[S].New York:ASME,2013.
    [13]American Society of Mechanical Engineers.Boiler and Pressure Vessel Code,SectionⅢ:Rules for Construction of Nuclear Power Plant Components[S].New York:ASME,2004.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心