液化场地桩-土-结构动力相互作用的有限元分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于Biot两相饱和多孔介质动力耦合理论,采用有效应力方法对液化场地桩基础的地震反应进行了三维有限元分析。在饱和液化砂土的循环塑性模拟中,采用了超固结边界面、Armstrong-Frederick型非线性运动硬化准则和非关联流动准则来描述动荷载作用下砂土的循环活动性以及液化强度等特性。对于桩的动力本构行为,则采用了可以考虑体积效应和轴向力影响的梁—柱单元来模拟。以某城市高架桥的实际工程为例,应用该方法对地基液化时桩—土—结构的动力相互作用进行了计算分析,并得到了一些有用的结论。
Based on Biot’s dynamic coupled theory for two-phase porous media, the earthquake response analysis for pile foundations was dealt with by a three-dimensional effective stress finite element method. Liquefiable saturated sand was simulated by a cyclic elasto-plastic constitutive model, which was mainly composed of overconsolidation boundary surface, Armstrong-Frederick type nonlinear kinematic hardening rule and non-associated flow rule, to describe the response features under seismic loading, such as cyclic mobility, liquefaction strength and so on. For the dynamic behaviour of piles, a beam-column element was used for considering the axial force-dependency as well as the volume effect. Subsequently, with the proposed method, an actual urban elevated highway bridge was illustrated involving a group-pile foundation subjected to seismic excitation in the saturated liquefiable deposits. From the simulated result, some fundamental aspects of pile-soil-structure dynamic interaction in liquefiable site were investigated to yield useful results for design.
引文
[1]刘惠珊.桩基抗震设计探讨—日本阪神大地震的启示[J].工程抗震,2000,3:27–32.
    [2]Finn W D L,Thavaraj T.Deep foundations in liquefiable soils:case histories,centrifuge tests and methods of analysis[A].Proceedings of Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C].San Diego,California,March26-31,2001,Paper No.SOAP-1.1–11.
    [3]Berrill J,Yasuda S.Liquefaction and piled foundations:some issues[J].Journal of Earthquake Engineering,2002,6(Special Issue1):1–41.
    [4]黄雨,舒翔,叶为民,唐益群.桩基础抗震研究现状综述[J].工业建筑,2002,32(7):50–53.
    [5]Oka F,Yashima A,Tateishi A,Taguchi Y,Yamashita S.A cyclic elasto-plastic constitutive model for sand considering aplain-strain dependence of the shear modulus[J].Geotêchnique,1999,49(5):661 680.
    [6]Zhang F,Kimura M.Numerical prediction of the dynamic behaviors of an RC group-pile foundation,Soils and Foundations[J].2002,42(3):77–92.
    [7]谢定义,张建民.饱和砂土瞬态动力学特性与机理分析[M].西安:陕西科学技术出版社,1995.
    [8]黄茂松,周健,吴世明.饱和多孔介质土动力学理论与分析方法[A].见:刘汉龙主编,土动力学与岩土工程抗震,第六届全国土动力学学术会议论文集[C].北京:中国建筑工业出版社,2002.68–83.
    [9]Oka F,Yashima A,Shibata T,Kato M,Uzuoka R.FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J].Applied Scientific Research,1994,52:209–245.
    [10]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报,1999,27(1):6–15.
    [11]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [12]Matsuo O,Shimazu T,Uzuoka R,Mihara M,Nishi K.Numerical analysis of seismic behavior of embankments founded on liquefiable soils[J].Soils and Foundations,2000,40(2):21–39.
    [13]Sugito M,Oka F,Yashima A,Furumoto Y,Yamada K.Time-dependent ground motion amplification characteristics at reclaimed land after the1995Hyogoken Nambu Earthquake[J].Engineering Geology,2000,56:137–150.
    [14]Lemaitre J,Chaboche J L.Mechanics of solid materials[M].Cambridge:Cambridge University Press,1990.
    [15]Oka F,Kodaka T,Kim Y S.A cyclic viscoelastic-viscoplastic constitutive model for clay and liquefaction analysis of multi-layered ground[J].International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(2):131–179.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心