震后地下拱结构的抗冲击波动载能力评估
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为正确评估震后地下防护结构的抗动载能力,对汶川地震地下防护结构的破坏状况进行了分析,根据结构震后破坏模式建立了相应的结构损伤力学模型,提出了震前固端拱在震后劣化为三铰拱的结构分析方法。针对不同结构型式,给出了动荷载动力系数的确定方法,通过计算得到了在相同均布荷载作用下地下拱形结构的弯矩和拱脚推力的计算公式。针对具体实例,计算了不同损伤型式的拱结构承受冲击波荷载时的结构内力,从而给出了震后结构的抗动载能力评估方法。研究表明,地下防护结构震后抗冲击能力下降可达50%以上。
Based on the investigation on the aseismic damage of underground structures in Wenchuan earthquake,the main damage modes of underground protective arch structures were summarized.Simplified structural models for damaged arches,including two-hinged and three-hinged arches,were built according to the damage modes and distributions.Residual dynamic resistances of seismic damaged underground arches were calculated by equivalent static load method.Through case studies,moments of arches with different constraints were analyzed under shock wave load,as well as the thrust force at the foot of the arches.Then the ability of anti-dynamic load of the damaged structure after eartheuake was evaluated.It is concluded that the load capapcity of the damaged arch drops by 16 per cent or even 50 per cent when controled by bending or shear resistance,respectively.
引文
[1]Takashi Matsuda,et al.A study on damage ofunderground subway structures during the 1995HYOGO-KEN NAMBU earthquake[C].GeotechnicalEngineering in Recovery from Earthquake Disaster,KIG-Forum,1997.
    [2]Susumu Nakamura,et al.Investigation,analysis andrestoration of the collapsed DAIKAI subway stationduring the 1995 HYOGO-KEN NAMBU earthquake[C].Proceeding of JSCE,1995.
    [3]Hayashi Y,Tamura K,Mori M,Takahashi I.Simulationanalyses of buildings damaged in the 1995 Kobe,Japan,Earthquake considering soil-structure interaction[J].Earthquake Engineering and Structural Dynamics,1997,28(4):371―391.
    [4]An X,Shawky A A,Maekawa K.The collapsemechanism of a subway station during the Great HanshinEarthquake[J].Cement and Concrete Composites,1997,19(3):241―257.
    [5]Hashash Y M A,Hook J J,Schmidt B,et al.Seismicdesign and analysis of underground structures[J].Tunneling and Underground Space Technology,2001,16(4):247―293.
    [6]John C M,Zahrah T F.Aseismic design of undergroundstructures[J].Tunneling and Underground SpaceTechnology,1987,2(2):165―197.
    [7]Fundamentals of protective design for conventionalweapons.TM5-855-1.U.S.Army Engineer WaterwaysExperiment Station[S].Vicksburg,Miss.,Jul.1984.
    [8]Krauthammer T,Puglisi R D.Simplified analysis ofburied reinforced concrete arches under simulated nuclearloads[J].Computers&Structures,1992,43:1029―1039.
    [9]Stevens D J,Krauthammer T.Analysis of blast-loaded,buried arch response.Part I:numerical approach[J].ASCE Journal of Structural Engineering,1991,117:197―212.
    [10]Stevens D J,Krauthammer T,Chandra D.Analysis ofblast-loaded,buried arch response.Part II:application[J].ASCE Journal of Structural Engineering 1991,117:213―234.
    [11]Dharaneepathy M V,Kewava Rao M N,Santhakumar AR.The influence of geometry on the blast response ofcircular arches[J].Computers&Structures,1992,45:755―763.
    [12]Weidlinger P,Hinman E.Analysis of undergroundprotective structures[J].ASCE Journal of StructuralEngineering,1988,114:1658―1673.
    [13]Wong F S,Weidlinger P.Design of undergroundprotective structures[J].ASCE Journal of StructuralEngineering,1983,109:1972―1979.
    [14]钱七虎.钱七虎院士论文集[C].北京:科学出版社,2007.Qian Qihu.Selections from academician Qian Qihu’sTheses[C].Beijing:Science Press,2007.(in Chinese)角度φ/(°)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心