钢网面板加筋土挡墙动力特性试验的变形研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于泥质红砂岩粗粒土填料,采用MTS分别模拟地震荷载、交通荷载、加-卸载多循环荷载进行大尺寸模型试验,研究了钢网面板土工格栅加筋土挡墙在上述荷载作用下的动力特性,获得了不同峰值的水平地震激励下模型挡墙不同位置的水平动位移、竖向动位移峰值响应等实测值;采用不同频率、不同幅值的竖向交通荷载正交试验法,获得了该模型挡墙在重复荷载作用下的最大水平变形、最大沉降量及位置等动力特性参数值;通过7种荷载、21组加卸载循环试验,获得了加-卸载多循环荷载作用下的实测沉降值。试验结果表明:该加筋结构具有整体变形的特性,是优良的抗震结构,能承受抗震设防烈度为9度的地震荷载;同时该加筋结构具有良好的稳定性和抗破坏性,重复荷载的幅值和振动次数对结构动力变形特性的影响较大,而振动频率对变形特性的影响不显著;多循环荷载作用下该加筋结构能够明显减小不均匀沉降。过长的筋材并不能明显地改善加筋土挡墙的动力特性。
Based on the argillaceous red sandstone granular soil,seismic load,traffic load and multiple cyclic load-unload were simplified by MTS universal material tester and the large-scale test model was conducted.The dynamic characteristics of geogrid reinforced retaining wall of flexible surface under the above loads were studied.The horizontal and vertical peak response in different positions of the laboratory model retaining wall under the horizontal earthquake with different peak values was obtained.The dynamic characteristic parameters of the model retaining wall under repeated load,such as the maximum horizontal deformation and the position of maximum settlement,were obtained by orthogonal experiments of traffic load of different frequencies and amplitudes.The practical measurement results under multiple cyclic load-unload were obtained according to cycle tests of seven loads and twenty one groups of load-unload.The results showed that: this stiffened structure was of global deformation properties and good aseismic structure,which can bear 9-degree seismic fortification intensity.Meanwhile this stiffened structure has good stability and anti-destructiveness.The amplitude of repeated loading and the number of vibration have great influence on structural dynamic deformation characteristics,but vibration frequency has little.The uneven settlement is reduced obviously for this stiffened structure under many circulations load.The dynamic characteristics of reinforced retaining wall couldn't be improved distinctly by overlong reinforcement.
引文
[1]Koseki J,Bathurst R.J,Güler E,Kuwano J.Seismic stability ofreinforced soil walls[C]//Geosynthetics,J.Kuwano&J.Koseki(eds)2006 Millpress,Rotterdam,ISBN 90 5966 044 7.51-77.
    [2]KONONOV A V,DIETERMAN H A,SERVANT S.A uniformlymoving constant load along a winkler supported strip[J]//EU-ROPE J Mech A/Solids,1999:731-743.
    [3]HUNG H H,YANG Y B.Elastic waves in visco-elastic half-spacegenerated by various vehicle loads[J].Soil Dynamics and Earth-Quake Engineering,2001,21:1-17.
    [4]JTG/T B02-01-2008,公路桥梁抗震设计细则[S].
    [5]GB50011-2001,建筑抗震设计规范[S].
    [6]黄向京,王维,刘泽.双绞合钢丝网加筋格宾挡土墙设计方法研究[J].公路工程,2009,34(2):10-15.
    [7]喻泽红,魏红卫,邹银生.加筋红砂岩风化土强度和变形特性[J].岩石力学与工程学报,2005,24(15):2770-2779.
    [8]杨果林,王永和.加筋土挡墙在重复荷载作用下的模型试验与动态响应分析[J].岩石力学与工程学报,2002,2(10):1541-1546.
    [9]李海深,杨果林,邹银生.加筋土挡土墙动力特性分析[J].中国公路学报.2004,17(2):28-32.
    [10]程火焰,周亦唐,钟国强.加筋土挡土墙地震动力特性研究[J].公路交通科技,2004,21(9):16-20.
    [11]刘华北.水平与竖向地震作用下土工格栅加筋土挡墙动力分析[J].岩土工程学报,2006,28(5):594-599.
    [12]杨果林,彭立,黄向京.加筋土结构分析理论与工程应用新技术[M].北京:中国铁道出版社,2007.
    [13]杨果林,王永和.土工合成材料在加—卸循环荷载作用下的应力—应变特性研究[J].铁道学报,2002,24(3):

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心