基于增量动力分析的钢框架结构抗震性能评估
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了预测结构的抗震能力,以分别代表低层、中层及高层结构的3层、9层、20层钢框架为例,采用增量动力分析方法对3个结构模型进行了近断层地震作用下不同强度指标的地震性能评估.基于增量动力分析,从概率的角度得到了结构在不同强度指标下的地震危险性曲线、年平均超越概率及重现周期.通过对比分析发现不同层数的结构模型选取不同的强度指标进行性能评估的有效性不同:3个结构模型均适合采用Sa作为地震动强度指标;3层钢框架不适合采用aPGA作为强度指标,9层钢框架较适合采用aPGA作为强度指标,而20层钢框架选取aPGA作为强度指标的有效性尚不确定.
Taking a 3-storeyed steel moment-resisting frame,a 9-storeyed one and a 20-storeyed one respectively as an example,an incremental dynamic analysis(IDA) was performed on the three models under near-fault ground motions to do seismic performance evaluation with different intensity measures to predict the seismic capacity of structures.Based on IDA,through the perspective of probability,seismic hazard curves,mean annual exceeding probabilities and return periods were gotten under different intensity measures.Through comparative analysis,it shows that,for models with different storeys,the effectiveness of the choosing of intensity measures to do seismic performance evaluation is different.These three structural models are all suitable for using Sa as intensity measures.For 3-storey steel frame,it is not suitable for using aPGA as intensity measure.For 9-storey steel frame,it is comparatively suitable for using aPGA as intensity measure.However,for 20-storey steel frame,the effectiveness of using aPGA as intensity measure needs further investigations.
引文
[1]Vamvatsikos D,Cornell C A.Incremental dynamicanalysis[J].Earthquake Engineering and StructuralDynamics,2002,31:491-514.
    [2]Vamvatsikos D,Cornell C A.Applied incrementaldynamic analysis[J].Earthquake Spectra,2004,20(2):523-553.
    [3]Christovasilis I P,Filiatrault A,Constantinou M C,et al.Incremental dynamic analysis of woodframebuildings[J].Earthquake Engineering and StructuralDynamics,2009,38:477-496.
    [4]Asgarian B,Sadrinezhad A,Alanjari P.Seismic per-formance evaluation of steel moment resisting framesthrough incremental dynamic analysis[J].Journal ofConstructional Steel Research,2010,66:178-190.
    [5]Zareian F,Krawinkler H.Assessment of probabilityof collapse and design for collapse safety[J].Earth-quake Engineering and Structural Dynamics,2007,36:1901-1914.
    [6]Baker J W,Cornell A.Spectral shape,epsilon,andrecord selection[J].Earthquake Engineering andStructural Dynamics,2006,35:1077-1095.
    [7]Liel A B,Haselton C B,Deierlein G G.Comparativeassessment of collapse safety of reinforced-concretemoment frame buildings[C]∥The 14th World Con-ference on Earthquake Engineering.Beijing:ChinaEarthquake Press,2008.
    [8]刘晶波,刘阳冰,闫秋实,等.基于性能的方钢管混凝土框架结构地震易损性分析[J].土木工程学报,2010,43(2):39-47.
    [9]Tothong P,Luco N.Probabilistic seismic demandanalysis using advanced ground motion intensitymeasures[J].Earthquake Engineering and StructuralDynamics,2007,36:1837-1860.
    [10]Luco N.Probabilistic seismic demand analysis,SMRF connection fractures,and near-sourceeffects[D].Stanford:Dept of Civil and Environ-ment Engineering,Stanford University,2002.
    [11]Baker J W,Cornell C A.Vector-valued intensitymeasures for pulse-like near-fault ground motions[J].Engineering Structures,2008,30(4):1048-1057.
    [12]Fu Q.Modeling and prediction of fault-normal near-field ground motions and structural response[D].Stantord:Dept of Civil and Environment Engineer-ing,Stanford University,2005.
    [13]Baker J W.Probabilistic structural response assess-ment using vector-valued intensity measures[J].Earthquake Engineering and Structural Dynamics,2007,36:1861-1883.
    [14]Yun A Y,Hamburger R O,Cornell C A,et al.Seismic performance evaluation for steel momentframes[J].Journal of Structural Engineering,2002,128(4):534-545.
    [15]刘启方,袁一凡,金星.断层附近地面地震动空间分布[J].地震学报,2004,26(2):183-192.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心